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A model describing the evolution of a binary mixture of compressible, viscous, and macro-

scopically immiscible °uids is investigated. The existence of global-in-time weak solutions for the

resulting system coupling the compressible Navier�Stokes equations governing the motion of

the mixture with the Allen�Cahn equation for the order parameter is proved without any
restriction on the size of initial data.

Keywords: Compressible Navier�Stokes system; Allen�Cahn dynamics; existence of weak

solutions.

AMS Subject Classi¯cation: 35Q30, 76N10, 76D05

1. Introduction

A °uid-mechanical theory for two-phase mixtures of °uids faces a well-known

mathematical di±culty: the movement of the interfaces is naturally amenable to a

Lagrangian description, while the bulk °uid °ow is usually considered in the Eulerian

framework. The phase-¯eld methods overcome this problem by postulating the
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existence of a \di®use" interface spread over a possibly narrow region covering the

\real" sharp interface boundary. A phase variable � is introduced to demarcate the

two species and to indicate the location of the interface. A mixing energy is de¯ned in

terms of � and its spatial gradient the time evolution of which is described by means

of a convection�di®usion equation.

As the underlying physical problem still conceptually consists of sharp interfaces,

the dynamics of the phase variable remains to a considerable extent purely ¯ctitious.

Typically, di®erent variants of Cahn�Hilliard, Allen�Cahn or other types of

dynamics are used (see Anderson et al.,4 Feng et al.16). In this paper, we consider a

variant of a model for a two-phase °ow undergoing phase changes proposed by

Blesgen.6 This model allows phases to grow or shrink due to changes of densities and

incorporates their transport with the current. As pointed out in Ref. 6, the model

should be viewed as a ¯rst step towards incorporating transport mechanism into the

description of phase-formation processes. Although the model certainly needs further

generalizations to be applicable to real-world problems, its mathematical analysis

carried out in this present paper is already rather involved.

The resulting problem consists of the Navier�Stokes system:

@t%þ divxð%uÞ ¼ 0; ð1:1Þ
@tð%uÞ þ divxð%u� uÞ ¼ divxT; ð1:2Þ

governing the evolution of the °uid density % ¼ %ðt;xÞ and the velocity ¯eld

u ¼ uðt;xÞ, coupled with a modi¯ed Allen�Cahn equation

@tð%�Þ þ divxð%�uÞ ¼ ��ð%; �;��Þ; ð1:3Þ

%� ¼ ���þ %
@fð%; �Þ
@�

; ð1:4Þ

describing the changes of the phase variable � ¼ �ðt;xÞ.
The rheology of the °uid is described by means of the Cauchy stress�tensor

T ¼ Tð%; �;rx�;rxuÞ,

T ¼ S� rx��rx�� jrx�j2
2

I

� �
� pð%; �ÞI; ð1:5Þ

where S is the conventional Newtonian viscous stress,

Sð�;rxuÞ ¼ �ð�Þ rxuþr t
xu� 2

3
divxuI

� �
þ �ð�ÞdivxuI; ð1:6Þ

and p denotes the thermodynamic pressure related to the potential energy f through

the formula

pð%; �Þ ¼ %2
@fð%; �Þ
@%

: ð1:7Þ
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Furthermore, following Blesgen6 we consider the potential energy density in the

form

fð%; �Þ ¼ Wð�Þ þ �G1ð%Þ þ ð1� �ÞG2ð%Þ; ð1:8Þ
with

W ð�Þ ¼ Lð�Þ � bð�Þ; ð1:9Þ
Gið%Þ ¼ �ð%Þ þ gið%Þ; i ¼ 1; 2; ð1:10Þ

where

L : ð0; 1Þ ! R is a convex function: ð1:11Þ
The function L may be singular at the endpoints � ¼ 0; 1 (see hypothesis (2.2)

below), in particular, the case of the so-called logarithmic potential (cf. e.g. Ref. 8,

p. 170)

Lð�Þ ¼ � log�þ ð1� �Þ logð1� �Þ ð1:12Þ
is included.

System (1.1)�(1.3) may be supplemented by the boundary conditions

uj@� ¼ 0; rx� � nj@� ¼ 0: ð1:13Þ
For technical reasons, and in contrast with Ref. 6, we have assumed that the

middle-term in (1.5) is independent of the density in the spirit of a similar model

proposed by Anderson et al.4 Models based on the compressible Navier�Stokes

system were also developed in the seminal work of Lowengrub and Truskinovsky.21

The models based on the incompressible Navier�Stokes system have been

extensively studied (see Abels,1,2 Desjardins,10 Gurtin et al.,19 Nouri and Poupaud,23

Plotnikov,24 and the references cited therein). Considerably less rigorous results are

available for the compressible models. In Ref. 3, the authors studied the model

proposed by Anderson et al.,4 based on the compressible Navier�Stokes system,

where the phase variable satis¯es a Cahn�Hilliard type equation. In comparison with

Ref. 3, the analysis of the present system, based on the Allen�Cahn dynamics of the

phase-¯eld variable, is mathematically much more delicate. The main di±culty is the

lower regularity of the phase variable due to much weaker a priori estimates, and last

but not least, the presence of the singular potential L in (1.9).

Our main goal is to develop a rigorous existence theory for problem (1.1)�(1.13)

based on the concept of weak solution for the compressible Navier�Stokes system

introduced by Lions.20 In particular, the theory can handle any initial data of ¯nite

energy and the solutions exist globally in time. Unfortunately, we are not able to

exclude the possibility that solutions might develop a vacuum state in a ¯nite time,

which is one of the major technical di±culties to be overcome. In particular, the

existence of suitable weak solutions, for which the phase variable ranges between

the physically relevant values 0 and 1, is strongly conditioned by a proper choice of

the approximation scheme. Moreover, in order to gain higher integrability or even
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boundedness of the density, we consider an equation of state containing a singular

component in the spirit of Carnahan and Starling.9

The paper is organized as follows. The basic hypotheses concerning the structural

properties of the constitutive functions, together with the main existence theorem,

are presented in Sec. 2. In Sec. 3, we introduce the basic approximation scheme in

order to construct solutions to our problem. The proof of existence of global-in-time

solutions is rather technical and carried over by means of several steps described in

Secs. 4�6, respectively.

2. Hypotheses and Main Result

2.1. Hypotheses

It follows immediately from (1.8)�(1.11) that

fð%; �Þ ¼ W ð�Þ þ �ð%Þ þ �g1ð%Þ þ ð1� �Þg2ð%Þ
¼ Lð�Þ � bð�Þ þ �ð%Þ þ �g1ð%Þ þ ð1� �Þg2ð%Þ: ð2:1Þ

In accordance with (1.11), we assume that

L : ð0; 1Þ ! ð0;1Þ is convex; ess lim
�!0þ

L 0ð�Þ ¼ �1; ess lim
�!1�

L 0ð�Þ ¼ 1; ð2:2Þ

b 2 C 2
c ð0; 1Þ; ð2:3Þ

meaning W is a perturbation of a singular potential L.

Since the quantity %2@%fð%; �Þ represents the pressure, it is natural to take

gið%Þ ¼ ai logð%Þ; ai > 0; i ¼ 1; 2: ð2:4Þ
Thus, by (1.7), we have that

pð%; �Þ ¼ %2� 0ð%Þ þ %ða1�þ a2ð1� �ÞÞ; ð2:5Þ
where the latter summand on the right-hand side represents the thermodynamic

pressure of a mixture of two species. The component �, identical for both species,

penalizes the density changes for large values of the pressure in the spirit of the hard-

sphere model.

To state our hypotheses on �, we introduce further notation setting

%2� 0ð%Þ ¼ P ð%Þ or; equivalently; �ð%Þ ¼
Z %

0

P ðzÞ
z2

dz; ð2:6Þ

where we require the latter integral to be ¯nite. Moreover, we assume that

P 2 C 1½0; rÞ; P ð0Þ ¼ P 0ð0Þ ¼ 0; P 0 � 0; lim inf
%!r� P ð%Þðr� %Þ3 ¼ Pr > 0: ð2:7Þ

Thus, P turns out to represent a singular pressure in the spirit of Carnahan and

Starling9 and r stands for the upper threshold of the density.

1132 E. Feireisl et al.
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Finally, we assume that the viscosity coe±cients are bounded functions of the

phase parameter, more precisely

�; � 2 C 1½0; 1�; �ð�Þ � � > 0; �ð�Þ � 0 for all � 2 ½0; 1�; ð2:8Þ
where � is a positive constant.

2.2. Weak solutions

We shall say that a trio f%;u; �g is a weak solution of problem (1.1)�(1.13)

supplemented with the initial data

%ð0; �Þ ¼ %0; ð%uÞð0; �Þ ¼ ð%uÞ0; ð%�Þð0; �Þ ¼ ð%�Þ0 ð2:9Þ
if

. the density % is a bounded measurable function, 0 � %ðt;xÞ � r for a.a. ðt;xÞ 2
ð0;T Þ � �, u 2 L2ð0;T ;W 1;2

0 ð�;R3ÞÞ, and the integral identityZ T

0

Z
�

ð%@t’þ %u � rx’Þdx dt ¼ �
Z
�

%0’ð0; �Þdx ð2:10Þ

holds for any test function ’ 2 C1
c ð½0;T Þ � �Þ;

. the phase function � satis¯es

� 2 L1ð0;T ;H 1ð�ÞÞ \ L2ð0;T ;H 2ð�ÞÞ ð2:11Þ

together with 0 � �ðt;xÞ � 1 for a.a. ðt;xÞ 2 ð0;T Þ � �. Moreover, pð%; �Þ 2
L1ðð0;T Þ � �Þ, and the integral identityZ T

0

Z
�

ð%u � @t’þ %ðu� uÞ : rx’Þdx dt

¼
Z T

0

Z
�

T : rx’ dx dt�
Z
�

ð%uÞ0 � ’ð0; �Þdx; ð2:12Þ

holds for any ’ 2 C1
c ð½0;T Þ � �;R3Þ, where the Cauchy stress T satis¯es (1.5),

(1.6) (note that the regularity conditions on u, � and p guarantee, in particular,

that T belongs to L1ðð0;T Þ � �Þ);
. � 2 L2ðð0;T Þ � �Þ, and the integral identityZ T

0

Z
�

%�@t’þ %�u � rx’ð Þdx dt ¼
Z T

0

Z
�

�’ dx dt�
Z
�

ð%�Þ0’ð0; �Þdx ð2:13Þ

holds for any ’ 2 C1
c ð½0;T Þ � �Þ, where � satis¯es (1.4), with

%1=2W 0ð�Þ 2 L2ðð0;T Þ � �Þ: ð2:14Þ
Finally, we require that the second condition in (1.13) holds.
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2.3. Main result

Having collected all the preliminary material, we are in a position to formulate the

main result of this paper.

Theorem 2.1. Let � � R3 be a bounded domain of class C 2þ�, � > 0. Suppose that

the function f is given by (2.1), where the functions L, b, �, g1, g2 satisfy hypotheses

(2.2)�(2.7), and that the viscosity coe±cients �, � obey (2.8). Furthermore, let the

initial data satisfy

0 < essinf
x2�

%0ðxÞ � esssup
x2�

%0ðxÞ < r;

ð%�Þ0 ¼ %0�0; with 0 < essinf
x2�

�0ðxÞ � esssup
x2�

�0ðxÞ < 1;

rx�0 2 L2ð�;R3Þ;
ð%uÞ0 ¼ %0u0; with u0 2 L2ð�;R3Þ:

8>>>><
>>>>:

9>>>>=
>>>>;
: ð2:15Þ

Then problem (1.1)�(1.13) possesses a weak solution f%;u; �g in ð0;T Þ � � in the

sense speci¯ed in Sec. 2.2.

The rest of the paper is devoted to the proof of Theorem 2.1.

3. Approximation Scheme

The solution f%;u; �g will be constructed by means of a multi-level approximation

scheme similar to that used in Chap. 7 of Ref. 12. To begin with, we regularize the

initial data replacing %0 by %0;�, u0 by u0;�, and �0 by �0;� where � 2 ð0; 1=4Þ tends to
0, and the quantities %0;�, u0;�, and �0;� are smooth in � and satisfy a stronger version

of hypothesis (2.15), namely

0 < � < essinf
x2�

%0;� � esssup
x2�

%0;�ðxÞ < r� �;

0 < � < essinf
x2�

�0;� � esssup
x2�

�0;�ðxÞ < 1� �;

jjrx�0;�jjL2ð�;R 3Þ � c;

jju0�jjL 2ð�;R 3Þ � c uniformly for � ! 0:

8>>>><
>>>>:

9>>>>=
>>>>;
: ð3:1Þ

Similarly, we introduce

f�ð%; �Þ ¼ L�ð�Þ � bð�Þ þ ��ð%Þ þ �g1;�ð%Þ þ ð1� �Þg2;�ð%Þ; ð3:2Þ
with

L� 2 C1 \W 1;1ðRÞ a convex function; ð3:3Þ
g1;�; g2;� 2 C1 \ L1½0;1Þ; g 0

1;�; g
0
2;� � 0: ð3:4Þ

Thanks to (2.2), we can assume that, for all � 2 ð0; 1=4Þ,
�L 0

�ð�Þ þ b 0ð�Þ þ g2;�ð%Þ � g1;�ð%Þ < 0 for � > 1� �; % � 0; ð3:5Þ
�L 0

�ð�Þ þ b 0ð�Þ þ g2;�ð%Þ � g1;�ð%Þ > 0 for � < �; % � 0: ð3:6Þ

1134 E. Feireisl et al.
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Finally, we take

��ð%Þ ¼
Z %

0

P�ðzÞ
z2

dz; ð3:7Þ

where P� 2 C 1½0;1Þ satis¯es
P 0
�ð%Þ � �%þ c	%��1; ð3:8Þ
P�ð%Þ � c	ð%� þ 1Þ; ð3:9Þ

with c	 ¼ c	ð�Þ > 0. The exponent � > 0 (large enough) will be speci¯ed below.

Moreover, we may assume that

d

ds
ðgi;�ðsÞ þ sg 0

i;�ðsÞÞ � � c	
2
s��2 for i ¼ 1; 2; ð3:10Þ

where c	 > 0 is the same as in (3.8). Indeed the functions gi;� can simply be con-

structed by truncation and molli¯cation; then it is not di±cult to check that gi;�ðsÞ þ
sg 0

i;�ðsÞ are monotone for small values of s. Thus, in order to have (3.10), it is

su±cient to truncate giðsÞ in a suitable way for large values of s. We shall assume

that L�, �� and gi;�, tend to L, �, and gi, i ¼ 1; 2, respectively, uniformly on compact

subsets of ð0; 1Þ, ð0; rÞ and ð0;1Þ (further details will be given in Sec. 6 below).

At the ¯rst level of the approximation procedure, the continuity equation (1.1) is

supplemented with an arti¯cial viscosity term, the momentum equation (1.2) is

replaced by its Faedo�Galerkin approximation, while the Allen�Cahn system (1.3),

(1.4) is provided with an extra term in order to keep the energy estimates valid. Then,

the resulting approximate system reads:

. % is a smooth solution (% 2 C 1ð½0;T �;C �ð�ÞÞ \ C 0ð½0;T �;C �þ2ð�ÞÞ, strictly posi-

tive in ½0;T � � �) (cf. Sec. 7.3.1 of Ref. 12) to the initial-boundary value problem

@t%þ divxð%uÞ ¼ "�%; " > 0; in ð0;T Þ � �; ð3:11Þ
rx% � nj@� ¼ 0; ð3:12Þ
%ð0; �Þ ¼ %0;�; ð3:13Þ

. u 2 C 1ð½0;T �;XnÞ satis¯es the integral identityZ T

0

Z
�

ð%u � @t’þ %½u� u� : rx’Þdx dt

¼
Z T

0

Z
�

"ð’rxuÞ � rx% dx dt

þ
Z T

0

Z
�

Tðrx�;rxuÞ : rx’ dx dt�
Z
�

%0;�u0;� � ’ð0; �Þdx ð3:14Þ
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for any test function ’ 2 C 1
c ð½0;T Þ;XnÞ, where Xn is a (suitably chosen) ¯nite-

dimensional subspace of C1
c ð�;R3Þ;

. �, � solve in the classical sense the system

@tð%�Þ þ divxð%�uÞ ¼ ��þ "�%�; ð3:15Þ
rx� � nj@� ¼ 0; ð3:16Þ
ð%�Þð0; �Þ ¼ %0;��0;�; ð3:17Þ

with

%� ¼ ���þ %
@f�ð%; �Þ
@�

; ð3:18Þ

where f� was speci¯ed through (3.2)–(3.8).

Given " > 0, � > 0 and n ¯nite, the approximate system (3.11)�(3.18) can be

solved on the time interval ð0;T Þ by means of the Schauder ¯xed point argument,

similarly to Chap. 7 of Ref. 12. Accordingly, the proof of Theorem 2.1 reduces to

performing successively the limits n ! 1, "! 0, and, ¯nally, � ! 0.

4. Limit in the Faedo{Galerkin Approximations

4.1. Uniform bounds

Our ¯rst goal is to let n ! 1 in the sequence of solutions f%n;un; �ng1
n¼1 to the

approximate problem (3.11)�(3.18). It is a routine matter to check, in accordance

with the hypotheses introduced in (3.1)�(3.8), that all quantities are regular, in

particular, both (3.11) and (3.15) are satis¯ed in the classical sense, and the density

%n is bounded below away from zero.

Thus, as the ¯rst step, we use (3.11) and (3.18) to rewrite (3.15) in the form

%n@t�n þ %nun � rx�n ¼ 1

%n
��n � L 0

�ð�nÞ þ b 0ð�nÞ þ g2;�ð%nÞ � g1;�ð%nÞ:

Then, by hypotheses (3.1), (3.5), (3.6), combined with the classical maximum prin-

ciple argument, we obtain that

� � �nðt;xÞ � 1� � for all ðt;xÞ 2 ½0;T � � ��; ð4:1Þ

where we point out that the bound is independent of both n and ".

Next, we aim to derive a global energy estimate. To obtain this, we ¯rst test (3.15)

by �n and (3.18) by @t�n. We then notice that, by (3.11),Z
�

@t%n�n�n ¼
Z
�

%n�nrx�n � un þ
Z
�

%n�nrx�n � un þ "

Z
�

�%n�n�n: ð4:2Þ

1136 E. Feireisl et al.
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Thus, standard computation leads to

d

dt

Z
�

1

2
jrx�nj2 þ %nf�ð%n; �nÞ

� �
dxþ jj�njj 2L2ð�Þ

¼
Z
�

ðf�ð%n; �nÞ þ %n@%f�ð%n; �nÞÞ@t%n dx�
Z
�

%n�nrx�n � un dx; ð4:3Þ

whence we have to handle the terms on the right-hand side.

The former can be treated expressing @t%n by means of (3.11). As for the latter

term, we use (3.18) that gives rise to

�
Z
�

%n�nrx�n � undx ¼
Z
�

ð��n � %n@�f�Þrx�n � undx: ð4:4Þ

Then, taking un as a test function in (3.14), multiplying (3.11) by junj2=2, and
adding both relations to (4.3), we check that the term depending on ��n in (4.4)

cancels out with the corresponding term in the �-dependent part of the stress tensor.

Consequently, integrating by parts the terms depending on f�, and performing some

additional manipulation, we end up with the approximate total energy balance:

d

dt

Z
�

1

2
%njunj2 þ

1

2
jrx�nj2 þ %nf�ð%n; �nÞ

� �
dx

þ
Z
�

SnðrxunÞ : rxun þ j�nj2½ �dx

� "

Z
�

ðf�ð%n; �nÞ þ %n@%f�ð%n; �nÞÞ�%n dx ¼ 0; ð4:5Þ

where Sn is the n-approximation of S given by (1.6).

In order to obtain suitable uniform bounds independent of n (and, in fact, of "), we

have to control the last integral. To this end, we ¯rst observe that, by (3.7)�(3.8),

�"
Z
�

ð�� þ %n�
0
�Þ�%ndx ¼ "

Z
�

P 0
�ð%nÞ
%n

jrx%nj2 dx

� "

Z
�

jrx%nj2ð� þ c	%
��2
n Þdx: ð4:6Þ

Next, we notice that, by (4.1) and (3.10),

�"
Z
�

ðW�ð�nÞ þ �nðg1;�ð%nÞ þ %ng
0
1;�ð%nÞÞ þ ð1� �nÞðg2;�ð%nÞ þ %ng

0
2;�ð%nÞÞÞ�%n dx

� �c�"jjrx%njjL 2ð�;R 3Þjjrx�njjL 2ð�;R 3Þ �
"c	
2

Z
�

%��2
n jrx%nj2 dx

� � "�

2
jjrx%njj2L 2ð�;R 3Þ þ "c�jjrx�njj2L 2ð�;R 3Þ �

"c	
2

Z
�

%��2
n jrx%nj2 dx; ð4:7Þ

where W� ¼ L� � b (cf. (3.2)).
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Finally, using Gronwall's lemma in (4.5), we infer that for a suitable subsequence

(not relabeled) of n % 1 there hold:

un ! u weakly in L2ð0;T ;H 1
0ð�;R3ÞÞ; ð4:8Þ

�n ! � weakly-ð	Þ in L1ð0;T ;H 1ð�ÞÞ \ L1ðð0;T Þ � �Þ; ð4:9Þ
�n ! � weakly in L2ð0;T ;L2ð�ÞÞ; ð4:10Þ

where (4.8) follows from Poincar�e's and Korn's inequalities, and (4.9) also leans on

(4.1). Moreover, we have

jj%njunj2jjL1ð0;T ;L 1ð�ÞÞ � c ð4:11Þ
independently of n.

Finally, using (3.7)�(3.8), (4.6) and (4.1), we may infer that

%n ! % weakly-ð	Þ in L1ð0;T ;L�ð�ÞÞ \ L2ð0;T ;H 1ð�ÞÞ: ð4:12Þ

4.2. Limit in the continuity equation

In order to derive further estimates on %n, we adopt (3.11) the procedure described in

Lemma 7.5 of Ref. 12. In what follows, we assume that � � 6 (cf. (3.8)), observing

that, in fact, it is enough to take � ¼ 6 in most steps.

We rewrite (3.11) as

@t%n þA"%n ¼ %n � divxð%nunÞ ¼ %n � %ndivxun � un � rx%n; ð4:13Þ
where we have set A" ¼ Id� "�, and where � denotes the Laplace operator sup-

plemented with the homogeneous Neumann boundary conditions and Id stands for

the identity operator. We also introduce, for s 2 R,H2s :¼ DðAs
"Þ, the domain of As

",

and, correspondingly, for v 2 H 2s, jjvjj2s :¼ jjAs
"vjjL 2ð�Þ. Then, by (4.8), (4.12) and

standard interpolation and embeddings,

jjdivxð%nunÞjjL 1ð0;T ;H�1=2Þ � cjjdivxð%nunÞjjL1ð0;T ;L 3=2ð�ÞÞ � c: ð4:14Þ
Next, thanks to (4.11) and (4.12),

jj%nunjjL1ð0;T ;H�1=4Þ � cjj%nunjjL1ð0;T ;L12=7ð�ÞÞ � c; ð4:15Þ
whence

jjdivxð%nunÞjjL1ð0;T ;H�5=4Þ � c: ð4:16Þ
Interpolating between (4.14) and (4.16) it then follows that

jjdivxð%nunÞjjLpð0;T ;H�1Þ � c for some p > 2; ð4:17Þ
whence, applying the Lp-regularity theory to (4.13) (notice that, indeed, H�1 ¼
ðH 1Þ	), we get

jj%njjLpð0;T ;H 1Þ � c for some p > 2: ð4:18Þ
Thus, using once more (4.8), we can improve (4.14) to

jjdivxð%nunÞjjLpðð0;T Þ��Þ � c for some p > 1: ð4:19Þ

1138 E. Feireisl et al.

M
at

h.
 M

od
el

s 
M

et
ho

ds
 A

pp
l. 

Sc
i. 

20
10

.2
0:

11
29

-1
16

0.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F 
PA

V
IA

 L
IB

R
A

R
IE

S 
on

 1
1/

06
/1

2.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



Applying the Lp-theory to (4.13), we ¯nally have

@t%n ! @t%; �%n ! �% weakly in Lpðð0;T Þ � �Þ for some p > 1: ð4:20Þ
Consequently, in accordance with (4.12),

%n ! % strongly in Lpðð0;T Þ � �Þ for all p 2 ½1; �Þ ð4:21Þ
and

%n ! % in Cwð½0;T �;L�ð�ÞÞ: ð4:22Þ
Then, by (4.8), we also get

%nun ! %u weakly in L2ðð0;T Þ � �Þ; ð4:23Þ
so that we can take the limit n % 1 in (3.11).

4.3. Limit in the Allen�Cahn equation

Firstly, we notice that, by (4.8), (4.9) and (4.12) (recall that � � 6),

jj%n�njjL1ð0;T ;L 6ð�ÞÞ � c; ð4:24Þ
jj%n�nunjjL 2ð0;T ;L3ð�ÞÞ � c: ð4:25Þ

Moreover, expanding divxð%n�nunÞ by Leibnitz formula and using again (4.18),

we easily see that

jjdivxð%n�nunÞjjLpðð0;T Þ��Þ � c for some p > 1: ð4:26Þ
Since the same bound holds for the right-hand side of (3.15), relations (4.1) and

(4.20) give rise to

jj@tð%n�nÞjjLpðð0;T Þ��Þ � c for some p > 1: ð4:27Þ

Now, let us handle the last term in (3.18) (cf. (1.8), (1.10)). We obtain

%n
@f�ð%n; �nÞ

@�
¼ %nW

0
�ð�nÞ þ %nðg1;�ð%nÞ � g2;�ð%nÞÞ: ð4:28Þ

By (4.21), (3.4) and Lebesgue's theorem, we then infer that

%nðg1;�ð%nÞ � g2;�ð%nÞÞ ! %ðg1;�ð%Þ � g2;�ð%ÞÞ strongly in L2ðð0;T Þ � �Þ: ð4:29Þ

Moreover, by virtue of (4.9), (4.22), (4.1) and (3.3),

%nW
0
�ð�nÞ ! %W 0

�ð�Þ weakly-ð	Þ in L1ð0;T ;L6ð�ÞÞ: ð4:30Þ

Finally, due to (4.10) and (4.21), we have

%n�n ! %� weakly in L1ðð0;T Þ � �Þ: ð4:31Þ
Thus we can take the limit in (3.18) to get

%� ¼ ���þ %W 0
�ð�Þ þ %ðg1;�ð%Þ � g2;�ð%ÞÞ: ð4:32Þ
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Next, we test (3.18) by �n and integrate over ð0;T Þ � �:Z T

0

Z
�

jrx�nj2 dx dt ¼
Z T

0

Z
�

%n�n�n dx dt�
Z T

0

Z
�

%nW
0
�ð�nÞ�n dx dt

�
Z T

0

Z
�

%nðg1;�ð%nÞ � g2;�ð%nÞÞ�n dx dt: ð4:33Þ

Observe that

@tð%nW 0
�ð�nÞÞ ¼ @t%nðW 0

�ð�nÞ �W 00
� ð�nÞ�nÞ þW 00

� ð�nÞ@tð%n�nÞ; ð4:34Þ
whence, by (4.1), (3.3), (4.20) and (4.27),

jj@tð%nW 0
�ð�nÞÞjjLpðð0;T Þ��Þ � c for some p > 1: ð4:35Þ

This implies that (4.30) can be improved to

%nW
0
�ð�nÞ ! %W 0

�ð�Þ in Cwð½0;T �;L6ð�ÞÞ: ð4:36Þ
Using (4.9), we deduce

%nW
0
�ð�nÞ�n ! %W 0

�ð�Þ� weakly in L2ðð0;T Þ � �Þ: ð4:37Þ
Thus, we can take the limit n % 1 in (4.33). Indeed, the ¯rst term on the right-

hand side can be treated in a similar (and in fact simpler) way. Comparing the result

with (4.32) integrated in space and time and using also Poincar�e's inequality in the

form as in Lemma 3.1 of Ref. 15, we ¯nally obtain

�n ! � strongly in L2ð0;T ;H 1ð�ÞÞ ð4:38Þ
and, consequently, W 0

�ð�Þ ¼ W 0
�ð�Þ. Thus, we can take the limit of (3.18).

Finally, we aim to take the limit of (3.15). Here, we simply notice that, by (4.38),

(4.1) and Lebesgue's theorem,

�n ! � strongly in Lpðð0;T Þ � �Þ for all p 2 ½1;1Þ: ð4:39Þ
Thus, by virtue of the strong convergence established in (4.38) and (4.21), it is easy to

pass to the limit. In particular, the last term on the right-hand side is treated by

means of (4.38) and (4.20).

4.4. Limit in the momentum equation

We choose ’ 2 C 1
c ð½0;T Þ;XmÞ for ¯xed m 2 N and examine the identity (3.14) for

n � m. Our aim is to let n % 1. First, we consider the stress�tensor T given by

(1.5). It is clear that the components speci¯ed in (1.6) admit limits thanks to hy-

pothesis (2.8) and relations (4.8) and (4.39). Next, the terms depending only on � in

(1.5) are treated by means of (4.38). Finally, to take the limit of the pressure term

contained in T, we observe that, thanks to (4.6),

%n ! % weakly in L�ð0;T ;L3�ð�ÞÞ; ð4:40Þ
whence the desired conclusion follows by (4.22), interpolation and Lebesgue's

theorem (cf. assumption (3.9)).
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Now, let us notice that, by means of (4.15), the integral relation (3.14), and

Ascoli's theorem (cf. e.g. Corollary 2.1 of Ref. 12), we have

%nun ! %u in Cwð½0;T �;L12=7ð�ÞÞ; ð4:41Þ
whence, by (4.8),

%nðun � unÞ ! %ðu� uÞ weakly in L2ð0;T ;L4=3ð�ÞÞ: ð4:42Þ
Finally, to treat the ¯rst term on the right-hand side of (3.14) we need to prove

that

%n ! % strongly in L2ð0;T ;H 1ð�ÞÞ: ð4:43Þ
To obtain this, we proceed similarly to the Allen�Cahn equation. Namely, we test

(3.11) by %n and integrate over ð0;T Þ � �. We then notice thatZ
�

divxð%nunÞ%n dx ¼
Z
�

%2
n

2
divxun dx; ð4:44Þ

and the same holds for the limit functions %, u. Thus, using (4.22) to treat the term

depending on the initial datum, we may infer that

lim sup
n%1

Z T

0

Z
�

jrx%nj2 dx dt �
Z T

0

Z
�

jrx%j2 dx dt; ð4:45Þ

which implies (4.43). Thus, the limit of (3.14) holds for any ’ 2 C 1
c ð½0;T �;XmÞ and,

due to arbitrariness of m and density of [Xm, holds also for ’ 2 C 1
c ð½0;T Þ � �Þ, as

desired.

4.5. Limit in the energy inequality

In order to perform the passage "& 0, we need to prove that the solution constructed

above still satis¯es a suitable version of the equality (4.5). Notice that this cannot be

achieved by using test functions in the limit equations as at this level the solutions are

no longer regular. Instead we take the limit in (4.5) for n % 1. Integrating (4.5) over

ð0; �Þ, � 2 ð0;T �, we obtainZ
�

1

2
%nð�Þjunð�Þj2 þ

1

2
jrx�nð�Þj2 þ %nð�Þf�ð%nð�Þ; �nð�ÞÞ

� �
dx

þ
Z �

0

Z
�

SnðrxunÞ : rxun dx dtþ
Z �

0

Z
�

j�nj2 dx dt

þ "

Z �

0

Z
�

ð%�1
n P 0

�ð%nÞ þ �nh
0
1;�ð%nÞ þ ð1� �nÞh 0

2;�ð%nÞÞjrx%nj2 dx dt

þ "

Z �

0

Z
�

ðW 0
�ð�nÞ þ h1;�ð%nÞ � h2;�ð%nÞÞrx�n � rx%n dx dt

¼
Z
�

1

2
%0;�ju0;�j2 þ

1

2
jrx�0;�j2 þ %0;�f�ð%0;�; �0;�Þ

� �
dx; ð4:46Þ
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where hi;�ðsÞ ¼ gi;�ðsÞ þ sg 0
i;�ðsÞ, i ¼ 1; 2. Our aim is to take the lim inf as n % 1 in

the above equality.

First notice, by (4.38) and (4.43), that

jrx%nj2 ! jrx%j2; rx%nrx�n ! rx% � rx� strongly in L1ðð0;T Þ � �Þ; ð4:47Þ

and, on the other hand,

�nh
0
1;�ð%nÞ þ ð1� �nÞh 0

2;�ð%nÞ þW 0
�ð�nÞ þ h1;�ð%nÞ � h2;�ð%nÞ ð4:48Þ

converges to the corresponding limit weakly-(*) in L1ðð0;T Þ � �Þ. Moreover,Z T

0

Z
�

%�1
n P 0

�ð%nÞjrx%nj2 dx dt ¼
Z T

0

Z
�

jrxQ�ð%nÞj2 dx dt; ð4:49Þ

where ðQ 0
�Þ2 ¼ P 0

�=%. Moreover, we check easily that Q�ð%nÞ ! Q�ð%Þ weakly in

L2ð0;T ;H 1ð�ÞÞ.
Concerning the other terms, we observe thatZ T

0

Z
�

�ð�nÞrxun : rxun dx dt ¼ jj njj2L 2ðð0;T Þ��Þ; ð4:50Þ

where

 n ¼ � 1=2ð�nÞrxun !  ¼ � 1=2ð�Þrxu weakly in L2ðð0;T Þ � �;R3�3Þ: ð4:51Þ

Thus, one can compute the lim inf of all terms on the left-hand side of (4.46)

except those on the ¯rst line, evaluated pointwise in time. To deal with these, one has

to perform one more integration in terms of the energy equality. Thus, we obtain thatZ tþ�

t

Z
�

1

2
%juj2 þ 1

2
jrx�j2 þ %f�ð%; �Þ

� �
dx ds

� lim inf
n%1

Z tþ�

t

Z
�

1

2
%njunj2 þ

1

2
jrx�nj2 þ %nf�ð%n; �nÞ

� �
dx ds ð4:52Þ

for all � > 0. Then, thanks to semi-continuity of norms with respect to the weak or

weak-(*) convergence, we obtain the limit form of the energy estimate. Dividing by �

and letting � & 0, the limit energy inequality is then recovered in the original form

and for a.a. value t of the time variable.

5. Arti¯cial Viscosity Limit

Our aim is to let "& 0. In accordance with the preceding step, we can assume to have

a family of approximate solutions fu"; %"; �"; �"g">0 satisfying (3.11)�(3.18). At this

stage, the regularity properties of u"; %"; �"; �" are those established in the previous

step. In addition, as stated in Sec. 4.5, we also know that it is possible to perform the

limit n % 1 in (4.46).
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5.1. Limit in the continuity equation

We rewrite (the "-version) of (4.13) as

@t%" þ "A%" ¼ "%" � divxð%"u"Þ: ð5:1Þ

Here, similarly to Sec. 4.2, A ¼ Id�� (Id being the identity operator), with the

homogeneous Neumann boundary conditions, and, for s 2 R, H2s :¼ DðAsÞ with the

natural norms. By means of the "-analogues of (4.8) and (4.12), it is not di±cult to

conclude that

jjdivxð%"u"ÞjjL2ð0;T ;H�1Þ þ jjdivxð%"u"ÞjjL1ð0;T ;H�5=4Þ � c: ð5:2Þ

Here and hereafter, the constants c are independent of ". Standard parabolic esti-

mates (namely, testing (5.1) by "%") yield

jj%"jjH 1ð0;T ;H�1Þ þ "1=2jj%"jjL1ð0;T ;L2ð�ÞÞ þ "jj%"jjL 2ð0;T ;H 1Þ � c: ð5:3Þ

Using the energy inequality we have

%" ! % in Cwð½0;T �;L6ð�ÞÞ; ð5:4Þ

u" ! u weakly in L2ð0;T ;H 1
0ð�;R3ÞÞ; ð5:5Þ

%"u" ! %u weakly in L2ð0;T ;L3ð�;R3ÞÞ; ð5:6Þ

in particular, we can pass to the limit in (5.1).

Since %", u" satisfy (5.1), we can use the regularization procedure introduced by

DiPerna and Lions11 to show that %�, u� represent a renormalized solution of

Eq. (1.1). Namely, there holdsZ T

0

Z
�

ðbð%�Þ@t’þ bð%�Þu� � rx’þ ðbð%�Þ � b 0ð%�Þ%�Þdivxu�’Þdx dt

¼ �
Z
�

bð%0;�Þ’ð0; �Þdx; ð5:7Þ

for any ’ 2 C1
c ð½0;T Þ � ��Þ and any b 2 W 1;1½0;1Þ. It is easy to see, at least for-

mally, that such a formula can be deduced by testing the limit equation of (5.1) by

b 0ð%�Þ’ for any ’ 2 C1
c ð½0;T Þ � ��Þ and integrating by parts.

5.2. Limit in the Allen�Cahn system and in the momentum equation

Our aim is to let "& 0 in the system

@tð%"�"Þ þ divxð%"�"u"Þ ¼ ��" þ "�%"�"; ð5:8Þ

%"�" ¼ ���" þ %"
@f�ð%"; �"Þ

@�"
: ð5:9Þ
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Let us ¯rst notice that, by the energy inequality, the "-analogue of (4.1), (5.4) and

Poincar�e's inequality (once more in the form of Lemma 3.1 of Ref. 15), we have

�" ! � weakly in L2ðð0;T Þ � �Þ; ð5:10Þ
�" ! � weakly-ð	Þ in L1ð0;T ;H 1ð�ÞÞ \ L1ðð0;T Þ � �Þ: ð5:11Þ

Thus, using once more (5.4), we also obtain

%"�" ! %� weakly-ð	Þ in L1ð0;T ;L6ð�ÞÞ: ð5:12Þ

Moreover, by (5.5),

jj%"�"u"jjL2ð0;T ;L 3ð�ÞÞ � c: ð5:13Þ
The energy inequality, hypothesis (3.4), relations (4.1) and (5.4), and a com-

parison of (5.9) give rise to

jj%"�"jjL 2ð0;T ;L3=2ð�ÞÞ þ jj��"jjL 2ð0;T ;L3=2ð�ÞÞ � c: ð5:14Þ
Let us pick 	 2 C 1

c ð½0;T Þ;H 2
0ð�ÞÞ and notice that

"

Z T

0

Z
�

�%"�"	 dx dt

¼ �"
Z T

0

Z
�

	rx%" � rx�" dx dt� "

Z T

0

Z
�

�"rx%" � rx	 dx dt: ð5:15Þ

Thus, testing (5.8) by 	, integrating over ð0;T Þ � �, and making use of relations

(5.13), (5.10) and (5.3), we easily see that

jj@tð%"�"ÞjjL 2ð0;T ;H �1ð�ÞÞþL 2ð0;T ;L1ð�ÞÞ � c; ð5:16Þ

whence (5.12) is improved to

%"�" ! %� in Cwð½0;T �;L6ð�ÞÞ ð5:17Þ
and, consequently, by (5.5), we also have

%"�"u" ! %�u weakly in L2ð0;T ;L3ð�;R3ÞÞ: ð5:18Þ

In order to pass to the limit in (5.8), we use 	 as a test function and observe that

the right-hand side of (5.15) can be transformed into

"

Z T

0

Z
�

	%"��" dxdtþ 2"

Z T

0

Z
�

%"rx�" � rx	dxdtþ "

Z T

0

Z
�

%"�"�	dxdt; ð5:19Þ

where all terms clearly go to 0 for 	 as above.

Next, we take the limit in (5.9), which is more involved. First, we observe that

W 0
�ð�"Þ ! W 0

�ð�Þ weakly-ð	Þ in L1ð0;T ;H 1ð�ÞÞ: ð5:20Þ
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Thus, due to (5.4),

%"W
0
�ð�"Þ ! %W 0

�ð�Þ weakly-ð	Þ in L1ð0;T ;L3ð�ÞÞ; ð5:21Þ
and, thanks to (5.17),

%"�"W
0
�ð�"Þ ! %�W 0

�ð�Þ weakly-ð	Þ in L1ð0;T ;L3ð�ÞÞ: ð5:22Þ
At this stage, we follow step by step the procedure developed in Sec. 2.6 of Ref. 3.

Accordingly, we focus on the principal steps only. First, we claim that, by (5.11) and

(5.17), Z T

0

Z
�

%�2
" dx dt !

Z T

0

Z
�

%�2 dx dt: ð5:23Þ

As a matter of fact, we can simply check that

�2
" ! �2 weakly in L2ð0;T ;H 1ð�ÞÞ; ð5:24Þ

whence

%�2
" � %�2 ¼ ð%� 2

" � %"�
2
"Þ þ ð%"�2

" � %"�"�Þ þ ð%"�"�� %�2Þ; ð5:25Þ
where the last three summands on the right-hand side go to 0 due to (5.11), (5.17)

and (5.24). Thus, it follows that

�" ! � strongly in LpðQþ
T Þ for all p 2 ½1;1Þ; ð5:26Þ

where Qþ
T (Q

0
T ) denotes the subset of ð0;T Þ � � where % > 0 (% ¼ 0). Moreover, since

% is non-negative, it is clear that

%" ! % strongly in LpðQ0
T Þ for all p 2 ½1; 6Þ: ð5:27Þ

Now, we may rewrite (5.9) as

%"�" ¼ ���" þ %"W
0
�ð�"Þ þ h�ð%"Þ; ð5:28Þ

where we have set h�ðsÞ ¼ sðg1;�ðsÞ � g2;�ðsÞÞ. At this level, taking the limit (in the

sense of distributions) yields

%� ¼ ���þ %W 0
�ð�Þ þ h�ð%Þ: ð5:29Þ

Now, as in Sec. 4.3, we test (5.28) by �" and integrate over ð0;T Þ � �. It is clear,

thanks to (5.20)�(5.22), that the desired conclusion

�" ! � strongly in L2ð0;T ;H 1ð�ÞÞ ð5:30Þ
follows as soon as we can prove thatZ T

0

Z
�

ð%�� � h�ð%Þ�Þdx dt ¼
Z T

0

Z
�

ð%��� h�ð%Þ�Þdx dt: ð5:31Þ
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Note that, by (5.27),ZZ
Q 0

T

h�ð%Þ� dx dt ¼
ZZ

Q 0
T

h�ð%Þ� dx dt ¼
ZZ

Q 0
T

h�ð%Þ� dx dt ¼ 0; ð5:32Þ

whereas, thanks to (5.26),ZZ
Qþ

T

h�ð%Þ� dx dt ¼
ZZ

Qþ
T

h�ð%Þ� dx dt: ð5:33Þ

Analogously, ZZ
Q 0

T

%�� dx dt ¼
ZZ

Q 0
T

%�� dx dt ¼ 0 ð5:34Þ

and, on the other hand,ZZ
Q 0

T

%�� dx dt ¼
ZZ

Q 0
T

%�� dx dt ¼ 0: ð5:35Þ

Moreover, still by (5.26),ZZ
Qþ

T

%�� dx dt ¼
ZZ

Qþ
T

%�� dx dt: ð5:36Þ

Thus, collecting (5.32)�(5.36), we get (5.31), and, consequently, (5.30). More-

over, we arrive at the relation

%� ¼ ���þ %W 0
�ð�Þ þ h�ð%Þ: ð5:37Þ

In order to identify the remaining two terms, we need strong convergence of %", whose

proof will be discussed later.

Finally, we pass to the limit in the momentum equation, that now readsZ T

0

Z
�

ð%"u" � @t’þ %"½u" � u"� : rx’Þdx dt

¼
Z T

0

Z
�

Tðrx�";rxu"Þ : rx’ dx dt�
Z
�

%0;�u0;� � ’ð0; �Þdx; ð5:38Þ

for ’ as in (2.12). Actually, it follows from (5.38) that @tð%"u"Þ is uniformly bounded

in some negative order Sobolev space. Thus, using (5.4) and (5.5), we conclude as

before that

%"u" ! %u in Cwð½0;T �;L12=7ð�ÞÞ ð5:39Þ
as well as

%"ðu" � u"Þ ! %ðu� uÞ weakly in L2ð0;T ;L4=3ð�ÞÞ: ð5:40Þ
Next, thanks to (5.5) and (5.30), the tensor T can be treated as in Sec. 4.4, with the

exception of the pressure term p�ð%"; �"Þ, whose treatment also requires the strong

convergence of %".
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5.3. Conclusion of the proof

Our main task is to obtain strong L1-convergence of the densities %". For the sake

of clarity, we just give the highlights of this procedure, referring to the next

section where the same arguments will be repeated (in fact in an even more delicate

situation).

. As a ¯rst step, we proceed as in Sec. 6.2.1 below, i.e. we use the analogue of the test

function in (6.24). By just adapting the notation, we then arrive at the analogue of

(6.26). In the present situation, thanks to (3.8)–(3.9), this gives in particular

pð%"; �"Þ ! pð%; �Þ weakly in Lð�þ1Þ=�ðð0;T Þ � �Þ: ð5:41Þ
. Second, we have to perform Lions' argument as in Sec. 6.5. Following step by step

that procedure, we then arrive at a pointwise (a.e.) convergence %" ! %, which

permits in particular to identify the remaining limits in (5.37) and (5.41). The only

di®erence with respect to estimate (6.45) consists in the presence of two other

terms

�"
Z T

0

 

Z
�


%"u" � rx�
�1ðdivxð1�rx%"ÞÞdx dt

and

"

Z T

0

 

Z
�


rx%"rxu" � rx�
�1ð1�%"Þdx dt;

which tend to zero as "& 0 due to (5.15), (5.39) and (5.45).

Having the strong convergence of %" at our disposal, it is now clear that we can take

the limit "& 0 in all equations. To conclude, it remains to pass to the limit in the

energy inequality (cf. (4.46)). To do this, we can use the argument similar to that in

Sec. 4.5. The main di®erence is that now we also have to test (5.1) by %" and deduce

that

1

2

d

dt

Z
�

%2
" dxþ "

Z
�

jrx%"j2 dx � � 1

2

Z
�

%2
"jdivxu"jdx: ð5:42Þ

This immediately leads to

"1=2jj%"jjL 2ð0;T ;H 1ð�ÞÞ � c: ð5:43Þ
More precisely, integrating (5.42) in time, we obtain

"

Z t

0

Z
�

jrx%"j2 dx ds � � 1

2

Z
�

%2
"ðtÞdxþ 1

2

Z
�

%2
0;� dx

� 1

2

Z T

0

Z
�

%2
"divxu" dx ds; ð5:44Þ
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so that, taking the lim sup as "& 0, using semicontinuity of norms w.r.t. weak

convergence, and comparing the result with the limit momentum equation (5.7) (in

the renormalized form (5.7) with bð%Þ ¼ %), we may infer that

"1=2%" ! 0 strongly in L2ð0;T ;H 1ð�ÞÞ: ð5:45Þ
Thus, the limit energy inequality can be computed as in Sec. 4.5.

6. Arti¯cial Pressure Limit

Our ultimate goal is to let � & 0. To this end, consider a family f%�;u�; ��g�>0 of the
approximate solutions constructed in the previous part. Accordingly, we choose the

initial data in (3.1) in such a way that

essinf
�

%0 � %0;�ðxÞ � esssup
�

%0 < r; x 2 �; %0;� ! %0;

essinf
�

�0 � �0;�ðxÞ � esssup
�

�0;x 2 �; �0;� ! �0 a:e: in �;

u0;� ! u0 in L2ð�;R3Þ

8>><
>>:

9>>=
>>; ð6:1Þ

as � & 0.

In addition, it is a routine to construct a family of convex functions L� 2 C1ðRÞ
such that

L�ð�Þ % Lð�Þ for any � 2 ð0; 1Þ; ð6:2Þ
and

L 0
�ð�Þ � L 0ð1� �Þ for all � > 1� �;

L 0
�ð�Þ � L 0ð�Þ for all � < �

ð6:3Þ

for a suitable sequence � & 0. Consequently, in accordance with hypothesis (2.2), we

can ¯nd the functions g1;�, g2;� such that (3.4)�(3.6) hold, and, in addition,

gi;�ð%Þ % ai logð%Þ for % � 1;

gi;�ð%Þ & ai logð%Þ for 0 � % � 1

)
as � & 0; i ¼ 1; 2; ð6:4Þ

g 0
i;�ð%Þ !

ai
%

in Cð0;1Þ as � & 0; i ¼ 1; 2: ð6:5Þ

Finally, we take

P�ð%Þ ¼ �%2 þ P ð%Þ if 0 � % � r� �;

P ðr� �Þ þ ð½%� r� 1�þÞ� if % � r� �:

�
ð6:6Þ

6.1. Uniform bounds

To begin, we recall (cf. (4.1)) that the functions �� satisfy the uniform bound

� � ��ðt;xÞ � 1� � for a:a: t 2 ð0;T Þ � �: ð6:7Þ
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Moreover, the energy inequalityZ T

0

Z
�

1

2
ð%�ju�j2 þ jrx��j2Þ þ %�f�ð%�; ��Þ

� �
dx@t dt

�
Z T

0

Z
�

½S�ðrxu�Þ : rxu� þ j��j2�dx dt

� �
Z
�

1

2
ð%0;�ju0;�j2 þ jrx�0;�j2Þ þ %�f�ð%0;�; �0;�Þ

� �
dx ð6:8Þ

holds for any  2 C1
c ½0;T Þ,  � 0,  ð0Þ ¼ 1.

It follows from hypothesis (2.15), (3.1) and (6.1) thatZ
�

1

2
%0;�ju0;�j2 þ jrx�0;�j2
� �þ %�f�ð%0;�; �0;�Þ

� �
dx

����
���� � c;

where the constant is independent of �. Consequently, we deduce the following

uniform estimates:

f ffiffiffiffiffi
%�

p
u�g�>0 bounded in L1ð0;T ;L2ð�;R3ÞÞ; ð6:9Þ
f��g�>0 bounded in L1ð0;T ;H 1ð�ÞÞ; ð6:10Þ

f%���ð%�Þg�>0 bounded in L1ð0;T ;L1ð�ÞÞ: ð6:11Þ
In particular,

f%�g�>0 bounded in L1ð0;T ;L�ð�ÞÞ: ð6:12Þ
Moreover,

f��g�>0 is bounded in L2ðð0;T Þ � �Þ; ð6:13Þ
and, as a direct consequence of Korn's inequality and hypothesis (2.8),

fu�g�>0 is bounded in L2ð0;T ;H 1ð�;R3ÞÞ: ð6:14Þ
Now, it follows from (2.10) and the uniform bounds (6.12), (6.14) that

%� ! % in Cweakð½0;T �;L�ð�ÞÞ; ð6:15Þ
u� ! u weakly in L2ð0;T ;H 1

0ð�;R3ÞÞ; ð6:16Þ
at least for suitable subsequences. Similarly, (6.10) yields

�� ! � weakly-ð	Þ in L1ð0;T ;H 1ð�ÞÞ; ð6:17Þ
where, as consequence of (6.11), (4.1),

0 � %ðt;xÞ � r for a:a: t;x; ð6:18Þ
0 � �ðt;xÞ � 1 for a:a: t;x: ð6:19Þ

As a matter of fact, (6.18) follows as the functional on L2ðð0;T Þ � �Þ associated to

the function Z�ðrÞ ¼ r��ðrÞ is \essentially" convex and converges to ZðrÞ ¼ r�ðrÞ in
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the sense of Mosco (cf. Ref. 22 and Proposition 3.19, p. 297 and Theorem 3.20, p. 298

in Ref. 5). Thus, (6.18) follows from (6.15), (6.11) and the lim inf-inequalityZ T

0

Z
�

Zð%Þdx dt � lim inf
�&0

Z T

0

Z
�

Z�ð%�Þdx dt <1: ð6:20Þ

The next step is to multiply (3.18) by F ðL 0
�ð��ÞÞ and integrate by parts to obtainZ

�

ðF 0ðL 0
�ð��ÞÞL 00

� ð��Þjrx��j2 þ %�L
0
�ð��ÞF ðL 0

�ð��ÞÞÞdx

¼
Z
�

ð%���F ðL 0
�ð��ÞÞ þ %�b

0ð��ÞF ðL 0
�ð��ÞÞ þ %�ðg2;�ð%�Þ � g1;�ð%�ÞÞF ðL 0

�ð��ÞÞÞdx;

where F is a non-decreasing function on R. Taking F ðzÞz 
 jzj�þ1 for large values of

jzj, we can use the uniform bounds established in (6.12), (6.13) in order to deduce

that Z T

0

Z
�

%�jL 0
�ð��Þj�þ1 dx dt � c uniformly with respect to � & 0; ð6:21Þ

where

0 < � ¼ �ð�Þ % 1 provided � ! 1 in ð6:6Þ:
Thus going back to (3.18) we may infer that

f���g�>0 is bounded in L�ðð0;T Þ � �Þ where 1 < �% 2 for � ! 1: ð6:22Þ
Relations (6.10), (6.22), together with the standard elliptic estimates and a simple

interpolation argument, yield

frx��g�>0 bounded in Lqðð0;T Þ � �;R3Þ for a certain q > 2 ð6:23Þ
provided the exponent � in (6.6) was chosen large enough.

6.2. Re¯ned pressure estimates

One of the principal di±culties in the proof of Theorem 2.1 stems from the fact that

the uniform bounds established in the previous part do not imply, in general, any

uniform estimates on the pressure p�ð%�; ��Þ, not even in the space L1ðð0;T Þ � �Þ.

6.2.1. Integrability of the pressure term

Following the strategy of Ref. 14, we use the quantities

’ ¼  ðtÞB bð%�Þ �
1

j�j
Z
�

bð%�Þdx
� �

;  2 C1
c ð0;T Þ; ð6:24Þ

as test functions in the weak formulation of the momentum equation (2.12), where

the symbol B 
 div�1
x denotes the integral operator introduced by Bogovskii.7
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The operator B assigns to each g 2 Lpð�Þ with
R
�
g dx ¼ 0 a solution B½g� 2

W 1;p
0 ð�;R3Þ of the problem

divx B½g� ¼ g in �; B½g�j@� ¼ 0:

It can be shown that B speci¯ed in Ref. 7 is a bounded linear operator acting on Lqð�Þ
with values in W 1;q

0 ð�;R3Þ for any 1 < q <1 (see Galdi,17 Chap. 3), and, moreover,

B can be extended as a bounded linear operator on the dual space ½W 1;qð�Þ�	 with

values in Lq 0 ð�;R3Þ for any 1 < q <1 (see Geissert, Heck and Hieber18).

We recall that %� and u�, for any ’ 2 C1
c ð½0;T Þ � ��Þ and any b 2 W 1;1½0;1Þ,

satisfy the renormalized equation (5.7).

With (5.7) at hand, we can use the quantities ’ speci¯ed in (6.24) as test functions

in (2.12) to obtainZ T

0

 

Z
�

p�ð%�; ��Þ bð%�Þ �
1

j�j
Z
�

bð%�ÞðyÞ dy
� �

dx dt ¼
X6
i¼1

Ii;�; ð6:25Þ

where

I1;� ¼�
Z T

0

 

Z
�

rx���rx���
1

2
jrx��j2I

� �
:rxB bð%�Þ�

1

j�j
Z
�

bð%�Þdy
� �� �

dxdt;

I2;� ¼
Z T

0

 

Z
�

S� : rxB bð%�Þ �
1

j�j
Z
�

bð%�Þdy
� �

dx dt;

I3;� ¼ �
Z T

0

 

Z
�

%�ðu� � u�Þ : rxB bð%�Þ �
1

j�j
Z
�

bð%�Þdy
� �

dx dt;

I4;� ¼ �
Z T

0

@t 

Z
�

%�u� � B bð%�Þ �
1

j�j
Z
�

bð%�Þdy
� �

dx dt;

I5;� ¼
Z T

0

 

Z
�

%�u� � B½divxðbð%�Þu�Þ�dx dt;

and

I6;� ¼
Z T

0

 

Z
�

%�u� � B ðb 0ð%�Þ%� � bð%�ÞÞdivxu�½

� 1

j�j
Z
�

ðb 0ð%�Þ%� � bð%�ÞÞdivxu� dy
�
dx dt:

Taking bð%Þ ¼ %, and using the uniform bounds established in (6.9)�(6.23),

together with boundedness of the operator B in Lq and ½W 1;q�	, we deduce, exactly as

in Ref. 14, that all integrals Ii;�, i ¼ 1; . . . ; 6 are bounded uniformly for � & 0 as long

as the exponent � in (6.6) is large enough. Consequently, we obtainZ T

0

Z
�

p�ð%�; ��Þ %� �
1

j�j
Z
�

%�ðyÞdy
� �

dx dt

����
���� � c;

with c independent of � & 0.
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Now, it follows from (6.1) that

1

j�j
Z
�

%�ðt; �Þdx ¼ 1

j�j
Z
�

%0;� dx ¼ m� < r;

therefore Z T

0

Z
�

p�ð%�; ��Þ %� �
1

j�j
Z
�

%�ðyÞdy
� �

dx dt ¼ J1;� þ J2;�;

with

J1;� ¼
Z
f%�<ðm�þrÞ=2g

p�ð%�; ��Þ %� �
1

j�j
Z
�

%�ðyÞdy
� �

dx dt

J2;� ¼
Z
f%��ðm�þrÞ=2g

p�ð%�; ��Þ %� �
1

j�j
Z
�

%�ðyÞdy
� �

dx dt

� r�m�

2

Z
f%��ðm�þrÞ=2g

p�ð%�; ��Þdx dt:

Since � is a bounded domain, the integrals J1;� are evidently bounded, and we may

conclude that

fp�ð%�; ��Þg�>0; fp�ð%�; ��Þ%�g�>0 are bounded in L1ðð0;T Þ � �Þ; ð6:26Þ
uniformly w.r.t. � & 0.

6.2.2. Equi-integrability of the pressure term

Estimate (6.26) is still not su±cient for passing to the limit in the pressure term. In

order to establish at least weak convergence of the pressure, we need equi-integr-

ability of the family fp�g�>0. To this end, we make use of hypothesis (2.7).

Analogously as in the previous section, we take the quantities

’ðt;xÞ ¼  ðtÞB ��ð%�Þ �
1

j�j
Z
�

��ð%�Þdx
� �

ð6:27Þ

with  2 C1
c ð0;T Þ,

�� ¼ ��ð%Þ ¼
logðr� %Þ if % � r� �;

logð�Þ otherwise;

�

as test functions in the momentum equation (2.12).

As P satis¯es hypothesis (2.7), and P� is given by (6.6), there are constants c1 > 0,

c2 such that

��ð%Þ �
c1

ðr� %Þ2 � c2 for all 0 � % � r� �;

in particular,

��ð%�Þ � c1ðqÞj��ð%�Þjq � c2ðqÞ for any 1 � q <1; ð6:28Þ
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and, similarly,

��ð%�Þ � c1j�0�ð%�Þj2 � c2; ð6:29Þ
where �� is given through (3.7).

Thus, exactly as in the previous section, we deduce a uniform boundZ T

0

Z
�

jp�ð%�Þ��ð%�Þjdx dt � c; c independent of � & 0; ð6:30Þ

as soon as we are able to control the integrals on the right-hand side of formula (6.25).

We check easily that the most di±cult term reads

I6;� ¼
Z T

0

Z
�

 %�u� � B ð�0�ð%�Þ%� � ��ð%�ÞÞdivxu�½

� 1

j�j
Z
�

ð�0�ð%�Þ%� � ��ð%�ÞÞdivxu� dy
�
dx dt: ð6:31Þ

In accordance with the uniform bounds established in (6.9), (6.11), (6.14), we can

use (6.28), (6.29) in order to obtain that

B ð�0�ð%�Þ%� � ��ð%�ÞÞdivxu�
�




� 1

j�j
Z

�
ð�0�ð%�Þ%� � ��ð%�ÞÞdivxu� dx

�




L 2ð0;T ;Lqð�;R 3ÞÞ

� cðqÞ

for any q < 3=2: ð6:32Þ
Indeed we have used the embedding L1ð�Þ ,!½W 1;q�	ð�Þ for q > 3, together with

the result of Geissert et al.18 on boundedness of the operator B : ½W 1;q�	 ! Lq 0 .

On the other hand, seeing that H 1ð�Þ ,!L6ð�Þ, we can take � > 6 in (6.6) in

order to control the momentum %�u� by the help of the energy estimates (6.9)�
(6.14). Consequently, the integrals I6;� are bounded uniformly for � & 0. Thus we

have shown (6.30).

Estimate (6.30) implies equi-integrability of the family fp�ð%�; ��Þg�>0 in the

Lebesgue space L1ðð0;T Þ � �Þ; whence we may conclude that

p�ð%�; ��Þ ! pð%; �Þ weakly in L1ðð0;T Þ � �Þ: ð6:33Þ

6.3. Convergence of convective terms

At this stage, we are ready to perform the limit � & 0 in the approximate equations and

to identify the limit system. We start with the convective terms that can be handled

in a rather uniform way repeating essentially the arguments of Secs. 4.4 and 5.2.

To begin with, relations (6.9), (6.15), (6.16) give rise to

%�u� ! %u weakly-ð	Þ in L1ð0;T ;Lpð�;R3ÞÞ for a certain p > 6=5
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provided � > 0 is large enough. This can be strengthened to

%�u� ! %u in Cwð½0;T �;Lpð�;R3ÞÞ ð6:34Þ
by means of (2.12). Thus the same argument leads ¯nally to

%�u� � u� ! %u� u weakly in Lpðð0;T Þ � �;R3�3Þ for a certain p > 1: ð6:35Þ
In the same fashion, relation (6.17) yields

%��� ! %� in Cwð½0;T �;L�ð�ÞÞ ð6:36Þ
and

%���u� ! %�u weakly in L2ðð0;T Þ � �;R3Þ: ð6:37Þ
Finally, the same argument used to deduce (5.23) yieldsZ T

0

Z
�

%j��j2 dx dt !
Z T

0

Z
�

%j�j2dx dt;

in other words

�� ! � a:a: in the set fðt;xÞ 2 ð0;T Þ � � j %ðt;xÞ > 0g: ð6:38Þ

6.4. Strong convergence of the extra stress

Following the method developed in Ref. 3 we show strong convergence of frx��g�>0.
The ¯rst part of the argument goes along the lines of Sec. 5.2. First, we let � & 0 in

(3.18) to obtainZ T

0

Z
�

%�’ dx dt ¼
Z T

0

Z
�

rx� � rx’ dx dt

þ
Z T

0

Z
�

ð%L 0
�ð�Þ’� %b 0ð�Þ’þ %ðg2;�ð%Þ � g1;�ð%ÞÞ’Þdx dt

for any su±ciently regular test function ’, where the bars denote weak limits in L1.

Note that f%�L 0
�ð��Þg�>0 is bounded in Lpðð0;T Þ � �Þ for a certain p > 1 as a con-

sequence of (6.12), (6.21). In particular, taking ’ ¼ � we getZ T

0

Z
�

%�� dx dt ¼
Z T

0

Z
�

rx� � rx� dx dtþ
Z T

0

Z
�

ð%L 0
�ð�Þ�

� %b 0ð�Þ�þ %ðg2;�ð%Þ � g1;�ð%ÞÞ�Þdx dt: ð6:39Þ

On the other hand, we also haveZ T

0

Z
�

%�� dx dt ¼ lim
�!0

Z T

0

Z
�

rx�� � rx�� dx dtþ
Z T

0

Z
�

ð%L 0
�ð�Þ�

� %b 0ð�Þ� þ %ðg2;�ð%Þ � g1;�ð%ÞÞ�Þdx dt: ð6:40Þ
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Now, it follows from (6.38) and the uniform bounds (6.12), (6.13) and (6.17) that

%�� ¼ %��; %b 0ð�Þ� ¼ %b 0ð�Þ� and

%ðg2;�ð%Þ � g1;�ð%ÞÞ� ¼ %ðg2;�ð%Þ � g1;�ð%ÞÞ�:
At this stage, the above procedure must be modi¯ed as the terms L 0

�ð��Þ are no

longer uniformly bounded. We observe, however, that

lim
�!0

Z T

0

Z
�

%�L
0
�ð��Þ�� dx dt ¼

Z T

0

Z
�

%L 0
�ð�Þ� dx dt:

Indeed,Z T

0

Z
�

%�L
0
�ð��Þ�� dx dt ¼

ZZ
f%>0g

%�L
0
�ð��Þ�� dx dtþ

ZZ
f%¼0g

%�L
0
�ð��Þ�� dx dt;

where, as a consequence of (6.38),ZZ
f%>0g

%�L
0
�ð��Þ�� dx dt !

ZZ
f%>0g

%L 0
�ð�Þ� dx dt;

while, in accordance with (6.12), (6.21),ZZ
f%¼0g

j%�L 0
�ð��Þ��jdx dt � jj%1=p

� L 0
�ð��Þ��jjLpðð0;T Þ��Þjj%�jj1=p

0
L1ðf%¼0gÞ ! 0

as � & 0.

In view of the previous arguments, we then arrive at

lim
�!0

Z T

0

Z
�

jrx��j2dx dt ¼
Z T

0

Z
�

jrx�j2dx dt;

in other words,

rx�� ! rx� ðstronglyÞ in L2ðð0;T Þ � �;R3Þ: ð6:41Þ
To conclude this part, we remark that regularity properties (2.11) and (2.14) can be

recovered a posteriori by testing (the limit of) (3.18) by a suitable truncation of

W 0ð�Þ and then letting the truncation parameter go to 0 in a standard way (the use

of a truncation seems necessary since W 0ð�Þ a priori could not have a su±cient

regularity to be used as a test function).

6.5. Strong convergence of the density

In order to complete the proof of Theorem 2.1, we have to show that

pð%; �Þ ¼ pð%; �Þ
in (6.33). To this end, we need strong (a.a. pointwise) convergence of f%�g�>0.

To begin, we use the renormalized continuity Eq. (5.7) to deduce (cf. p. 140 of

Ref. 12)Z
�

ð% logð%Þ � % logð%ÞÞð�; �Þdxþ
Z �

0

Z
�

ð% divxu � % divxuÞdx dt ¼ 0 ð6:42Þ
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for any � � 0, where, as always, we have used the bar to denote weak limits in L1 of

sequences of composed functions.

On the other hand, as the densities %� are bounded in L1ð0;T ;L�ð�ÞÞ, with �

large enough, we can use directly the procedure of Lions,20 together with the

necessary modi¯cations introduced in Ref. 13 to handle the variable viscosity coef-

¯cients, to establish the \weak continuity" of the e®ective viscous pressure, in par-

ticular, Z T

0

Z
�



4

3
�ð�Þ þ �ð�Þ

� �
ð% divxu � % divxuÞdx dt

� lim inf
�!0

Z �

0

Z
�


ðp�ð%�; ��Þ%� � pð%; �Þ%Þdx dt

for any 
 2 C1
c ð�Þ; 
 � 0: ð6:43Þ

The proof of (6.43) is tedious but nowadays well understood (see Ref. 13). The

basic idea is to use multipliers of the form

’ðt;xÞ ¼  ðtÞ
ðxÞrx�
�1½1�%��; ’ðt;xÞ ¼  ðtÞ
ðxÞrx�

�1½1�%�;
 2 C1

c ð0;T Þ; 
 2 C1
c ð�Þ; ð6:44Þ

as test functions in the momentum equation (2.12) and its asymptotic limit for � ! 0,

respectively. Here, the symbol ��1 stands for the inverse of the Laplacian considered

on the whole space R3.

After a straightforward manipulation, we obtainZ T

0

@t 

Z
�


%�u� � rx�
�1½1�%��dx dt

�
Z T

0

 

Z
�


%�u� � rx�
�1 divx½%�u��dx dt

þ
Z T

0

 

Z
�

%�ðu� � u�Þ : ðrx
 �rx�
�1½1�%��Þdx dt

þ
Z T

0

 

Z
�


%�ðu� � u�Þ : rxrx�
�1½1�%��dx dt

þ
Z T

0

 

Z
�

p�ð%�; ��Þrx
 � rx�
�1½1�%��dx dt

þ
Z T

0

 

Z
�


p�ð%�; ��Þ%� dx dt

¼
Z T

0

 

Z
�

�ð��Þ rxu� þr t
xu� �

2

3
divxu�I

� �
rx


� �
� rx�

�1½1�%��dx dt

þ
Z T

0

 

Z
�

�ð��Þ
 rxu� þr t
xu� �

2

3
divxu�I

� �
: rxrx�

�1½1�%��dx dt
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þ
Z T

0

 

Z
�

�ð��Þdivxu�ðrx
 � rx�
�1½1�%�� þ 
 divxrx�

�1½1�%��Þdx dt

þ
Z T

0

 

Z
�

jrx��j2
2

I�rx�� �rx��

� �
rx


� �
� rx�

�1½1�%��dx dt

þ
Z T

0

 

Z
�



jrx��j2

2
I�rx�� �rx��

� �
: rxrx�

�1½1�%��dx dt;

ð6:45Þ
andZ T

0

@t 

Z
�


%u � rx�
�1½1�%�dx dt�

Z T

0

 

Z
�


%u � rx�
�1 divx½%u�dx dt

þ
Z T

0

 

Z
�

%ðu� uÞ : ðrx
 �rx�
�1½1�%�Þdx dt

þ
Z T

0

 

Z
�


%ðu� uÞ : rxrx�
�1½1�%�dx dt

þ
Z T

0

 

Z
�

pð%; �Þrx
 � rx�
�1½1�%�dx dtþ

Z T

0

 

Z
�


pð%; �Þ% dx dt

¼
Z T

0

 

Z
�

�ð�Þ rxuþr t
xu� 2

3
divxuI

� �
rx


� �
� rx�

�1½1�%�dx dt

þ
Z T

0

 

Z
�

�ð�Þ
 rxuþr t
xu� 2

3
divxuI

� �
: rxrx�

�1½1�%�dx dt

þ
Z T

0

 

Z
�

�ð�Þdivxuðrx
 � rx�
�1½1�%� þ 
 divxrx�

�1½1�%�Þdx dt

þ
Z T

0

 

Z
�

jrx�j2
2

I�rx��rx�

� �
rx


� �
� rx�

�1½1�%�dx dt

þ
Z T

0

 

Z
�



jrx�j2

2
I�rx��rx�

� �
: rxrx�

�1½1�%�dx dt: ð6:46Þ

Now, relation (6.43) can be deduced by letting � & 0 in (6.45) and comparing the

resulting expression with (6.46). This nontrivial step is the heart of the existence

theory for the barotropic Navier�Stokes system developed by Lions20 and extended

to variable viscosity coe±cients in Ref. 13. The reader may consult Sec. 3.3 of Ref. 3,

for an adaptation of this method to the present problem. Let us point out only that

the main ingredient is the so-called commutator lemma:

Lemma 6.1. (See Lemma 4.2 of Ref. 13) Let w 2 W 1;pðR3Þ and V 2 L2ðR3;R3Þ,
where p > 6=5. Then there exists ! ¼ !ðpÞ > 0 and qðpÞ > 1 such that

jjrx�
�1 divx½wV� � wrx�

�1 divx½V�jjW !;qðR 3;R 3Þ � cðpÞjjwjjW 1;pðR 3ÞjjVjjL 2ðR 3;R 3Þ:
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Consequently, in order to show strong convergence of the densities, it is enough to

observe that

lim inf
�!0

Z �

0

Z
�


ðp�ð%�; ��Þ%� � pð%; �Þ%Þdx dt � 0

for any 
 2 C1
c ð�Þ; 
 � 0: ð6:47Þ

Indeed, in case (6.47) holds, it follows that
R
�
% logð%Þdx ! R

�
% logð%Þdx a.a. in

ð0;T Þ and so %� ! % a:a: in ð0;T Þ � �.

In view of (6.4) and strong convergence of f��g�>0 established in (6.41), relation

(6.47) follows as soon as we observe that

lim inf
�!0

Z �

0

Z
�


ðP�ð%�Þ%� � P ð%Þ%Þdx dt � 0 for any 
 2 C1
c ð�Þ; 
 � 0: ð6:48Þ

To see (6.48), it is enough to realize that, due to (6.6), % 7! P�ð%Þ are non-

decreasing (for % � 0) for any ¯xed � > 0, and P� � P� provided � � �; therefore

lim inf
�!0

Z T

0

Z
�


ðP�ð%�Þ%� � P ð%Þ%Þdx dt

� lim inf
�!0

Z T

0

Z
�


ðP�ð%�Þ%� � P ð%Þ%Þdx dt

�
Z T

0

Z
�


ðP�ð%Þ � P ð%ÞÞ% dx dt for any fixed �;

where the last inequality follows from monotonicity of P�.

However,

P�ð%Þ � P ð%Þ ! 0 in L1ðð0;T Þ � �Þ for � ! 0;

as a direct consequence of the equi-integrability property of the pressure established

in (6.30).

Summing up relations (6.42)�(6.47) we conclude that

%� ! % a:a: in ð0;T Þ � � and pð%; �Þ ¼ pð%; �Þ;
which completes the proof of Theorem 2.1.
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