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A model describing the evolution of a binary mixture of compressible, viscous, and macro-
scopically immiscible fluids is investigated. The existence of global-in-time weak solutions for the
resulting system coupling the compressible Navier—Stokes equations governing the motion of
the mixture with the Allen—Cahn equation for the order parameter is proved without any
restriction on the size of initial data.
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1. Introduction

A fluid-mechanical theory for two-phase mixtures of fluids faces a well-known
mathematical difficulty: the movement of the interfaces is naturally amenable to a
Lagrangian description, while the bulk fluid flow is usually considered in the Eulerian
framework. The phase-field methods overcome this problem by postulating the
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existence of a “diffuse” interface spread over a possibly narrow region covering the
“real” sharp interface boundary. A phase variable y is introduced to demarcate the
two species and to indicate the location of the interface. A mixing energy is defined in
terms of x and its spatial gradient the time evolution of which is described by means
of a convection—diffusion equation.

As the underlying physical problem still conceptually consists of sharp interfaces,
the dynamics of the phase variable remains to a considerable extent purely fictitious.
Typically, different variants of Cahn—Hilliard, Allen—Cahn or other types of
dynamics are used (see Anderson et al.,* Feng et al.'®). In this paper, we consider a
variant of a model for a two-phase flow undergoing phase changes proposed by
Blesgen.® This model allows phases to grow or shrink due to changes of densities and
incorporates their transport with the current. As pointed out in Ref. 6, the model
should be viewed as a first step towards incorporating transport mechanism into the
description of phase-formation processes. Although the model certainly needs further
generalizations to be applicable to real-world problems, its mathematical analysis
carried out in this present paper is already rather involved.

The resulting problem consists of the Navier— Stokes system:

0+ din(Qu) =0, (11)
0;(ou) + div,(ou ® u) = div, T, (1.2)

governing the evolution of the fluid density o= o(t,x) and the velocity field
u = u(t, z), coupled with a modified Allen—Cahn equation

9y(ox) + div,(oxu) = —u(o, x, Ax), (1.3)
op = —Ax+g%i><)7 (1.4)

describing the changes of the phase variable x = x(t, ).
The rheology of the fluid is described by means of the Cauchy stress—tensor
T =T(o. X, Vax, V1),

V. x|?

T=S- (sz Q@ Vux — T]I) —p(o, X)L, (1.5)

where S is the conventional Newtonian viscous stress,

2
S(x, V,u) = v(x) (Vzu +Via— gdivzuﬂ) + n(x)div,ul, (1.6)
and p denotes the thermodynamic pressure related to the potential energy f through
the formula

plo, x) = QQ%EZX)- (1.7)
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Furthermore, following Blesgen® we consider the potential energy density in the

form
flo,x) =W(x) + xGi(e) + (1 = x)Ga(0), (1.8)
with
W) = L) = b(x), (1.9)
Gi(e) =T(0) + gi(0), =12, (1.10)
where
L:(0,1) - R is a convex function. (1.11)

The function L may be singular at the endpoints x = 0,1 (see hypothesis (2.2)
below), in particular, the case of the so-called logarithmic potential (cf. e.g. Ref. 8,
p. 170)

L(x) = xlog x + (1 — x)log(1 — x) (1.12)

is included.
System (1.1)—(1.3) may be supplemented by the boundary conditions

ulpo =0, V,x - nlsp =0. (1.13)

For technical reasons, and in contrast with Ref. 6, we have assumed that the
middle-term in (1.5) is independent of the density in the spirit of a similar model
proposed by Anderson et al.* Models based on the compressible Navier—Stokes
system were also developed in the seminal work of Lowengrub and Truskinovsky.?!

The models based on the incompressible Navier—Stokes system have been
extensively studied (see Abels,""? Desjardins,'® Gurtin et al.,'” Nouri and Poupaud,*
Plotnikov,** and the references cited therein). Considerably less rigorous results are
available for the compressible models. In Ref. 3, the authors studied the model
proposed by Anderson et al.,* based on the compressible Navier—Stokes system,
where the phase variable satisfies a Cahn—Hilliard type equation. In comparison with
Ref. 3, the analysis of the present system, based on the Allen—Cahn dynamics of the
phase-field variable, is mathematically much more delicate. The main difficulty is the
lower regularity of the phase variable due to much weaker a priori estimates, and last
but not least, the presence of the singular potential L in (1.9).

Our main goal is to develop a rigorous ezistence theory for problem (1.1)—(1.13)
based on the concept of weak solution for the compressible Navier—Stokes system
introduced by Lions.?” In particular, the theory can handle any initial data of finite
energy and the solutions exist globally in time. Unfortunately, we are not able to
exclude the possibility that solutions might develop a vacuum state in a finite time,
which is one of the major technical difficulties to be overcome. In particular, the
existence of suitable weak solutions, for which the phase variable ranges between
the physically relevant values 0 and 1, is strongly conditioned by a proper choice of
the approximation scheme. Moreover, in order to gain higher integrability or even
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boundedness of the density, we consider an equation of state containing a singular
component in the spirit of Carnahan and Starling.’

The paper is organized as follows. The basic hypotheses concerning the structural
properties of the constitutive functions, together with the main existence theorem,
are presented in Sec. 2. In Sec. 3, we introduce the basic approximation scheme in
order to construct solutions to our problem. The proof of existence of global-in-time
solutions is rather technical and carried over by means of several steps described in
Secs. 4—6, respectively.

2. Hypotheses and Main Result
2.1. Hypotheses
It follows immediately from (1.8)—(1.11) that

flo,x) = W(x) +T'(e) + xg1(0) + (1 = x)g2(0)
= L(x) — b(x) + T'(e) + xg1(0) + (1 = x)g2(0)- (2.1)

In accordance with (1.11), we assume that

L:(0,1) — (0,00) 1is convex, ess lir&L’(X) = —00, ess hI{l L'(x) =0, (2.2)
X— X—1-

be C0,1), (2.3)

meaning W is a perturbation of a singular potential L.
Since the quantity 0%9,f(o, x) represents the pressure, it is natural to take

gl(g) = a; log(g)’ a; > 07 1= 15 2. (24)
Thus, by (1.7), we have that

p(o,x) = 0*T"(0) + olarx + az(1 — X)), (2.5)

where the latter summand on the right-hand side represents the thermodynamic
pressure of a mixture of two species. The component I', identical for both species,
penalizes the density changes for large values of the pressure in the spirit of the hard-
sphere model.

To state our hypotheses on I', we introduce further notation setting

°P(2)

dz
22

0°T'"(0) = P(p) or, equivalently, I'(o) :/ , (2.6)
0

where we require the latter integral to be finite. Moreover, we assume that

PecC'0,r), P0)=P'(0)=0, P'>0, liminfP(o)(r—9)*=P.>0. (2.7)
01—

Thus, P turns out to represent a singular pressure in the spirit of Carnahan and
Starling” and 7 stands for the upper threshold of the density.
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Finally, we assume that the viscosity coefficients are bounded functions of the
phase parameter, more precisely

v,neC0,1], wv(x)>v>0, n(x)>0 forall x€][0,1], (2.8)

where v is a positive constant.

2.2. Weak solutions

We shall say that a trio {o,u,x} is a weak solution of problem (1.1)—(1.13)
supplemented with the initial data

0(0,-) =09, (0u)(0,-) = (eu)y, (ex)(0,) = (ex)o (2.9)
if

o the density p is a bounded measurable function, 0 < o(t,z) < r for a.a. (t,z) €
(0,7) x Q, u € L20,T; Wy*(%;R3)), and the integral identity

T
/ / (00p + ou- Vyp)de dt = — / 2p(0, )z (2.10)
0 JQ Q

holds for any test function ¢ € C2°([0,T) x Q);
o the phase function y satisfies

X € L0, T; H'(Q)) N L2(0,T; H2(Q)) (2.11)

together with 0 < x(t,z) <1 for a.a. (t,x) € (0,T) x Q2. Moreover, p(o,x) €
L'((0,T) x ), and the integral identity

T
/ / (ou-0wp +o(u®u): Vyp)dudt
0 Jo
T
= / /']I‘ : Vypdadt — / (ou)g - (0, -)dz, (2.12)
0J0 Q

holds for any ¢ € C([0,T) x €;R3), where the Cauchy stress T satisfies (1.5),
(1.6) (note that the regularity conditions on u, x and p guarantee, in particular,

that T belongs to L'((0,7T) x Q));
e € L%(0,T) x Q), and the integral identity

T T
//Q(QxatsoJr@xu-Vw)dwdt://ﬂutpdwdt—/g(gx)oso(O, Jdz - (2.13)
0 0

holds for any ¢ € C([0,T) x ), where p satisfies (1.4), with
o' PW'(x) € L2((0,T) x Q). (2.14)

Finally, we require that the second condition in (1.13) holds.
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2.3. Main result

Having collected all the preliminary material, we are in a position to formulate the
main result of this paper.

Theorem 2.1. LetQ C R? be a bounded domain of class C*t*, X > 0. Suppose that
the function f is given by (2.1), where the functions L, b, ', g1, g, satisfy hypotheses
(2.2)—(2.7), and that the viscosity coefficients v, n obey (2.8). Furthermore, let the
initial data satisfy

0< essmf oo(z) < esssup 0o(z) <,
(2X)o = 20Xo> wzth 0 < essinf XO( ) < esssup xo() < 1,

z€Q) . (2.15)
mmepmﬂq
(ou)y = gouy, with uy € L2(Q;R?).

Then problem (1.1)—(1.13) possesses a weak solution {o,u,x} in (0,T) X Q in the
sense specified in Sec. 2.2.

The rest of the paper is devoted to the proof of Theorem 2.1.

3. Approximation Scheme

The solution {p,u, x} will be constructed by means of a multi-level approximation
scheme similar to that used in Chap. 7 of Ref. 12. To begin with, we regularize the
initial data replacing gy by 0y 4, Uy by ug s, and xo by xos where ¢ € (0,1/4) tends to
0, and the quantities g s, ug s, and x5 are smooth in Q and satisfy a stronger version
of hypothesis (2.15), namely

0<é< essmf 005 < esssup g s(x) <1 —0,

F2SY)
0<éo< essmfxoé < esssup Xos(x) <1 =46,
€n

(3.1)
||V'LX0 6||L2 (@QRr3) <G,
[ags|| p2(rs) < ¢ uniformly for 6 — 0.
Similarly, we introduce
folo:x) = Ls(x) = b(x) + T's(0) + xg1,5(0) + (1 = X)g2.5(0), (3.2)
with

Ls € C*NWY(R) a convex function, (3.3)

91,6, 92,6 eC™n LOC[O7 OO), gl1,579l2.6 > 0. (34)

Thanks to (2.2), we can assume that, for all 6 € (0,1/4),
—L5(x) +b'(X) + g26(0) = g15(0) <O for x >1-6,0>0, (35)
—L5(x) +b'(x) + g25(0) — g15(0) > 0 for x < 8,0>0. (3.6)
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Finally, we take

T's(0) = /0 QP‘s(QZ) dz, (3.7)

where Ps € C'[0, 00) satisfies
Pi(0) > 8o+ c.0™, (3.8)
Fi(o) < (07 +1), (3.9)

with ¢, = ¢*(6) > 0. The exponent v > 0 (large enough) will be specified below.
Moreover, we may assume that

i(gié(s) + 595 5(s)) > S for = 1,2, (3.10)
ds " ’ 2

where ¢, > 0 is the same as in (3.8). Indeed the functions g; s can simply be con-
structed by truncation and mollification; then it is not difficult to check that g; s(s) +
59 s(s) are monotone for small values of s. Thus, in order to have (3.10), it is
sufficient to truncate g;(s) in a suitable way for large values of s. We shall assume
that Ls, I's and g, 5, tend to L, I', and g;, ¢ = 1, 2, respectively, uniformly on compact
subsets of (0,1), (0,7) and (0,00) (further details will be given in Sec. 6 below).

At the first level of the approximation procedure, the continuity equation (1.1) is
supplemented with an artificial viscosity term, the momentum equation (1.2) is
replaced by its Faedo—Galerkin approximation, while the Allen—Cahn system (1.3),
(1.4) is provided with an extra term in order to keep the energy estimates valid. Then,
the resulting approzimate system reads:

e 0 is a smooth solution (o € C'([0,T]; C*(Q)) N C°([0, T]; C*+2(Q)), strictly posi-
tive in [0, T] x Q) (cf. Sec. 7.3.1 of Ref. 12) to the initial-boundary value problem

00+ div,(ou) =elAp, >0, in (0,7) x Q, (3.11)
vmg : n‘@ﬂ = 07 (312)
0(0,+) = 0y.s; (3.13)

e uc C([0,7T]; X,,) satisfies the integral identity

T
/ / (ou- 0+ ou®@u]: V,p)dzdt
0JQ

T
:/ /E(wvxufvmgdxdt
0Ja

T
+/ /T(VVL)G V.Lu) : VLQDd‘T dt — / Q0,6U0,5 QD(O, )dl‘ (314)
0JQ Q
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for any test function ¢ € CL([0,T); X,,), where X, is a (suitably chosen) finite-
dimensional subspace of C'°(Q; R3);
e X, p solve in the classical sense the system

d(ox) + div,(oxu) = —p + Ao, (3.15)
VX - nlpo =0, (3.16)
(2x)(0, ) = 00,5X0.55 (3.17)
with
dfs(0:x) (3.18)

:—A -
on X+ EVE

where fs was specified through (3.2)—(3.8).

Given £ > 0, 6 > 0 and n finite, the approximate system (3.11)—(3.18) can be
solved on the time interval (0,7") by means of the Schauder fixed point argument,
similarly to Chap. 7 of Ref. 12. Accordingly, the proof of Theorem 2.1 reduces to
performing successively the limits n — oo, € — 0, and, finally, 6 — 0.

4. Limit in the Faedo—Galerkin Approximations
4.1. Uniform bounds

Our first goal is to let n — oo in the sequence of solutions {o,,u,, x,} e to the
approximate problem (3.11)—(3.18). It is a routine matter to check, in accordance
with the hypotheses introduced in (3.1)—(3.8), that all quantities are regular, in
particular, both (3.11) and (3.15) are satisfied in the classical sense, and the density
0y, is bounded below away from zero.

Thus, as the first step, we use (3.11) and (3.18) to rewrite (3.15) in the form

1
QnatXn + Opuy * szn = _AXn - Lg(Xn) + b/(Xn) + 92,(5(4971) - glé(gn)

Then, by hypotheses (3.1), (3.5), (3.6), combined with the classical maximum prin-
ciple argument, we obtain that

§< xn(t,z) <1—6 forall (t,z) € [0,T] x Q, (4.1)
where we point out that the bound is independent of both n and e.

Next, we aim to derive a global energy estimate. To obtain this, we first test (3.15)
by u, and (3.18) by 9;x,. We then notice that, by (3.11),

/athXnNn = / Qanvz/J'n ‘u, + / :Qnﬂnszn ‘u, + 8‘/ AQanNn (42)
Q Q Q Q
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Thus, standard computation leads to

d

1
il (2|Vxxn|2 + 00 fs(0n, xn))dx + llall 22

= /Q(fé(gnv Xn) + Qnagfé‘(gn7 Xn))atgn dz — /QQTL;U'TLVIXTL “uay, d.’)j; (43)

whence we have to handle the terms on the right-hand side.
The former can be treated expressing 0,0, by means of (3.11). As for the latter
term, we use (3.18) that gives rise to

7/9 Qmu‘nvan ' 'Llndl‘ = /;(AXTL - Qna)(]%)Van ! undm' (44)
(

Then, taking u, as a test function in (3.14), multiplying (3.11) by |u,|?/2, and
adding both relations to (4.3), we check that the term depending on Ay, in (4.4)
cancels out with the corresponding term in the y-dependent part of the stress tensor.
Consequently, integrating by parts the terms depending on fs, and performing some
additional manipulation, we end up with the approximate total energy balance:

d [[1 , 1
— [ |5 VXl - d
dt 0 |:2 Qn|un| +2| xXn| +ané(@an) T

+ [ 8T s Vi, + o
Q
- 6/ (f&(gnv Xn) + Qnagfé(Qna Xn))AQn dr = 0, (45)
Q

where S, is the n-approximation of S given by (1.6).
In order to obtain suitable uniform boundsindependent of n (and, in fact, of ), we
have to control the last integral. To this end, we first observe that, by (3.7)—(3.8),

P!
76/ (F6 + Qan)AQndI = 5:/ M|vx9n|2 dz
Q Q On
> < [ Vo 26-+ .oy i (46)
Q

Next, we notice that, by (4.1) and (3.10),

_E,/Q (Wé(Xn) + Xn(glﬁ(Qn) + :Qngllé(gn)) + (1 - Xn)(gZé(gn) + Qng,2,6(gn)))AQn dz

ec, -
>~ Vol IVoallzoms — 5 [ 6319, da
Q
£b 2 2 EC, -2 2
> 77”v:¢@nHL2(Q:R3) +€C§||vanHL2(Q;R3) - 2/ On |vr9n| de, (47)
)

where Wy = Ls — b (cf. (3.2)).
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Finally, using Gronwall’s lemma in (4.5), we infer that for a suitable subsequence
(not relabeled) of n ' oo there hold:

u, —u weakly in L*(0,T; Hj(Q; R?)), (4.8)
Xn — X weakly-(*) in L>®(0,T; H(2)) N L>((0,T) x Q), (4.9)
w, — g weakly in L2(0,T; L*(2)), (4.10)

where (4.8) follows from Poincaré’s and Korn’s inequalities, and (4.9) also leans on
(4.1). Moreover, we have

Hgn|un|2||L°C(0,T;L1(§2)) <c (4.11)
independently of n.
Finally, using (3.7)—(3.8), (4.6) and (4.1), we may infer that
0, — 0 weakly-(*) in L>(0,T;L7(Q)) N L2(0,T; H(12)). (4.12)

4.2. Limat in the continuity equation

In order to derive further estimates on g,, we adopt (3.11) the procedure described in
Lemma 7.5 of Ref. 12. In what follows, we assume that v > 6 (cf. (3.8)), observing
that, in fact, it is enough to take v = 6 in most steps.
We rewrite (3.11) as

00, + Ac0, = 0, — div,(0,u,) = 0, — 0,div,u, —u, - V,0,, (4.13)
where we have set A, = Id — eA, and where A denotes the Laplace operator sup-
plemented with the homogeneous Neumann boundary conditions and Id stands for
the identity operator. We also introduce, for s € R, H?* := D(A?), the domain of A,
and, correspondingly, for v € H?, ||v||s, := ||AZv||f2(). Then, by (4.8), (4.12) and
standard interpolation and embeddings,

[div,. (enup)llzora-12) < elldivy(eawn)llzior Lo < c. (4.14)
Next, thanks to (4.11) and (4.12),
lonn |z, 11y < ellontnllp=o i) < ¢ (4.15)
whence
lldiv, (00 )l L0350y < c (4.16)

Interpolating between (4.14) and (4.16) it then follows that
”divx(gnun)||LP(0A,T;H*1) <c for some p > 2; (417)

whence, applying the LP-regularity theory to (4.13) (notice that, indeed, H ! =
(H')*), we get

ooy < ¢ for some p > 2. (4.18)
Thus, using once more (4.8), we can improve (4.14) to

div, (e, )|l Lo(0.r)x0) < ¢ for some p > 1. (4.19)
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Applying the LP-theory to (4.13), we finally have

010, — 010, Ao, — Ap weakly in L?((0,T) x ) for some p > 1.
Consequently, in accordance with (4.12),

o, — 0 strongly in L?((0,7) x Q) forallp € [1,v)
and
on — ¢ in Cy([0,T]; L7(Q)).
Then, by (4.8), we also get
o,u, — ou weakly in L2((0,T) x Q),

so that we can take the limit n /" oo in (3.11).

4.3. Limit in the Allen—Cahn equation
Firstly, we notice that, by (4.8), (4.9) and (4.12) (recall that v > 6),
llonXnllL=or:Lo) < ¢

” O XnUp ||L2(0,T:L3(52)) <ec

1139

(4.20)

(4.21)

(4.22)

(4.23)

Moreover, expanding div,(9,Xx,u,) by Leibnitz formula and using again (4.18),

we easily see that

iV, (@nXutt)ll o)) < ¢ for some p > 1.

(4.26)

Since the same bound holds for the right-hand side of (3.15), relations (4.1) and

(4.20) give rise to
10¢(enxn)llLe(or)x) < ¢ for some p > 1.

Now, let us handle the last term in (3.18) (cf. (1.8), (1.10)). We obtain

6f(5(@n7 Xn)

By (4.21), (3.4) and Lebesgue’s theorem, we then infer that

= QnW(;(Xn) + Qn(gl,é(gn) - 92,6(971))'

00(916(00) — 92.5(0n)) — 0(g1,5(0) — g26(0)) strongly in L*((0,T) x Q).

Moreover, by virtue of (4.9), (4.22), (4.1) and (3.3),

0. W5(xn) = oW3(x)  weakly-(*) in L>(0,T; L°(92)).

Finally, due to (4.10) and (4.21), we have
Onbtn — op weakly in L'((0,T) x Q).
Thus we can take the limit in (3.18) to get

op = —Ax + oWi(x) + o(g16(0) — 92.5(0))-

(4.27)

(4.28)

(4.29)

(4.30)

(4.31)

(4.32)
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Next, we test (3.18) by x,, and integrate over (0,7) x £

//|VTX7L| dz dt = //Qnﬂandxdt_/ /ané Xn Xn dzdt

- /O /S 2 0n(915(0n) — 92.5(04)) Xy dz dt. (4.33)
Observe that
0:(0W5(xn)) = 0100 (W5 (xn) = W5 (Xn)Xn) + W5 (x0) 0 (00X (4.34)
whence, by (4.1), (3.3), (4.20) and (4.27),
104 (0, W s(x)l2o((0,1)x0) < € for some p > 1. (4.35)

This implies that (4.30) can be improved to
0aWi(x) = eW300)  in Cy((0,T]; L)) (4.36)
Using (4.9), we deduce
0 W5(xXn)Xn — oW }(x)x weakly in L2((0,T) x Q). (4.37)

Thus, we can take the limit n " oo in (4.33). Indeed, the first term on the right-
hand side can be treated in a similar (and in fact simpler) way. Comparing the result
with (4.32) integrated in space and time and using also Poincaré’s inequality in the
form as in Lemma 3.1 of Ref. 15, we finally obtain

Xn — X strongly in L2(0,T; H(2)) (4.38)
and, consequently, W/(x) = W(x). Thus, we can take the limit of (3.18).
Finally, we aim to take the limit of (3.15). Here, we simply notice that, by (4.38),
(4.1) and Lebesgue’s theorem,
Xn, — X strongly in LP((0,T) x Q) for all p € [1,00). (4.39)
Thus, by virtue of the strong convergence established in (4.38) and (4.21), it is easy to

pass to the limit. In particular, the last term on the right-hand side is treated by
means of (4.38) and (4.20).

4.4. Limat in the momentum equation

We choose ¢ € CL([0,T); X,,) for fixed m € N and examine the identity (3.14) for
n > m. Our aim is to let n /" oo. First, we consider the stress—tensor T given by
(1.5). Tt is clear that the components specified in (1.6) admit limits thanks to hy-
pothesis (2.8) and relations (4.8) and (4.39). Next, the terms depending only on x in
(1.5) are treated by means of (4.38). Finally, to take the limit of the pressure term
contained in T, we observe that, thanks to (4.6),

0, — 0 weakly in L7(0,T; L*(Q)); (4.40)

whence the desired conclusion follows by (4.22), interpolation and Lebesgue’s
theorem (cf. assumption (3.9)).
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Now, let us notice that, by means of (4.15), the integral relation (3.14), and
Ascoli’s theorem (cf. e.g. Corollary 2.1 of Ref. 12), we have
oau, — ou in C,([0,T]; L™*/7()); (4.41)
whence, by (4.8),
o,(1, ®u,) — o(u®u) weakly in L2(0,T; LY3(Q)). (4.42)

Finally, to treat the first term on the right-hand side of (3.14) we need to prove
that

0, — 0 strongly in L*(0,T; H'()). (4.43)

To obtain this, we proceed similarly to the Allen—Cahn equation. Namely, we test
(3.11) by g, and integrate over (0,7") x 2. We then notice that

2
/divz(gnun)gn dx:/&divzun dz, (4.44)
Q Q 2

and the same holds for the limit functions g, u. Thus, using (4.22) to treat the term
depending on the initial datum, we may infer that

T T
limsup//|Vzgn|2dmdt§//|ng|2dacdt, (4.45)
n,/' 0o 0JQ 0JQ

which implies (4.43). Thus, the limit of (3.14) holds for any ¢ € C(]0,T]; X,,,) and,
due to arbitrariness of m and density of UX,,, holds also for ¢ € C1([0,T) x Q), as
desired.

4.5. Limait in the energy inequality

In order to perform the passage € \, 0, we need to prove that the solution constructed
above still satisfies a suitable version of the equality (4.5). Notice that this cannot be
achieved by using test functions in the limit equations as at this level the solutions are
no longer regular. Instead we take the limit in (4.5) for n " oo. Integrating (4.5) over
(0,7), T € (0,T], we obtain

/{(i Qn( )|un( )|2 _|VLX7L( )‘ +Qn(T)fé(Qn(T)aXTL(T))>dx

//S :V unda;dt—i—//|un|2dxdt

0
+ 8/ / (Wé(Xn) + h1,6(gn) - h2,6(9n))vw><n : vx@n dz dt
0JQ

1 1
- /Q (5 00,6105 + §|V1Xo,5|2 + 00.5f5( 0.5 qu))dx, (4.46)
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where h; 5(s) = g;5(s) + 89; 5(s), i = 1,2. Our aim is to take the liminf as n " oo in
the above equality.
First notice, by (4.38) and (4.43), that

IV,00% — [Ve0l%  Vie0uVaeXn — Veo-Vox  strongly in L1((0,7) x Q), (4.47)
and, on the other hand,
Xnh'5(0n) + (1= xa)has(0n) + Wilxn) + his(en) — has(on) (4.48)

converges to the corresponding limit weakly-(*) in L*>°((0,T) x Q). Moreover,

T T
/ /Q 0 PL(0)|Va0nl? dedt = / /Q 1V, Qs(00))? dedr, (4.49)
0 0

where (Q%)? = P{/o0. Moreover, we check easily that Qs(0,) — Qs(0) weakly in
L%*0,T; HY(Q)).
Concerning the other terms, we observe that

T
/0 /QV(Xn)kun : vxun dzdt = ||w7L||%2(((),T)><Q)a (450)

where
U, = v2(x) Vo, — ¥ = v?(x)V,u  weakly in L2((0,T) x Q;R33).  (4.51)

Thus, one can compute the liminf of all terms on the left-hand side of (4.46)
except those on the first line, evaluated pointwise in time. To deal with these, one has
to perform one more integration in terms of the energy equality. Thus, we obtain that

t+1 1 ) 1 )
solul® + |V x|* + ofs(o, x) |dzds
¢ Ja\2 2

t4r

< lim inf / (l onlu,|? + l|VxXn|2 + 00 f5(0n; xn)>d:v ds  (4.52)
n,/0o t o) 2 2

for all 7 > 0. Then, thanks to semi-continuity of norms with respect to the weak or

Weak—(*) convergence, we obtain the limit form of the energy estimate. Dividing by 7

and letting 7\ 0, the limit energy inequality is then recovered in the original form

and for a.a. value t of the time variable.

5. Artificial Viscosity Limit

Our aim is to let € \ 0. In accordance with the preceding step, we can assume to have
a family of approximate solutions {u,, o, fi., X. }.~0 satisfying (3.11)—(3.18). At this
stage, the regularity properties of u., 0., ., x. are those established in the previous
step. In addition, as stated in Sec. 4.5, we also know that it is possible to perform the
limit n / oo in (4.46).
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5.1. Limat in the continuity equation

We rewrite (the e-version) of (4.13) as
010. +€Ao. = €0, — divw(@sus)- (51)

Here, similarly to Sec. 4.2, A =1d — A (Id being the identity operator), with the
homogeneous Neumann boundary conditions, and, for s € R, H?* := D(A?) with the
natural norms. By means of the e-analogues of (4.8) and (4.12), it is not difficult to
conclude that

l[div,. (e-u)llp2 021y + dive (eous) e a5y < e (5:2)

Here and hereafter, the constants ¢ are independent of . Standard parabolic esti-
mates (namely, testing (5.1) by ep,) yield

locllmroma1y + 2 llo Nl ~orra) + ellocll 2o rmn < ¢ (5.3)

Using the energy inequality we have

0. — o inC,([0,T]; L°(Q)), (5.4)
u. —u  weakly in L2(0,T; Hj(;R?)), (5.5)
o.u. — ou weakly in L%(0,T; L3(Q; R3)), (5.6)

in particular, we can pass to the limit in (5.1).

Since o, u, satisfy (5.1), we can use the regularization procedure introduced by
DiPerna and Lions!! to show that gs,us represent a renormalized solution of
Eq. (1.1). Namely, there holds

T
/0 /Q(b(Q&)atSD +b(0s)us - Vo + (b(os) — b'(05)05)div,usp)dz di

. /Q b(204)(0, )dz, (5.7)

for any p € C2([0,T) x Q) and any b € W1>[0,00). It is easy to see, at least for-
mally, that such a formula can be deduced by testing the limit equation of (5.1) by
b'(0s) for any p € C2([0,T) x Q) and integrating by parts.

5.2. Limit in the Allen—Cahn system and in the momentum equation

Our aim is to let £ \, 0 in the system
9y(0:x:) + divy(e-xeu.) = —pe + £A0:Xe, (5.8)

8f5(@5; Xe) )

Oclle = 7AX5 + 0- 9
Xe
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Let us first notice that, by the energy inequality, the e-analogue of (4.1), (5.4) and
Poincaré’s inequality (once more in the form of Lemma 3.1 of Ref. 15), we have

pe — - weakly in L2((0,T) x Q), (5.10)
Xe — x  weakly-(*) in L>(0,T; H1(£2)) N L*>((0,T) x ). (5.11)
Thus, using once more (5.4), we also obtain
0.x. — ox weakly-(*) in L>(0,T; L°(Q)). (5.12)
Moreover, by (5.5),
llo=xeucllz20.1:03(0) < c. (5.13)

The energy inequality, hypothesis (3.4), relations (4.1) and (5.4), and a com-
parison of (5.9) give rise to

locttellL20 Loy + 1AX: N 20,1032 (0)) < € (5.14)
Let us pick ¢ € C([0,T); HE(Q)) and notice that

T
5/ /Agexe(bdxdt
0 Ja

T T
= —5/ /(bVIQ5 -Vux. dzdt — 5/ /XEVQCQE -V, dadt. (5.15)
0Ja 0Jo

Thus, testing (5.8) by ¢, integrating over (0,7) x €2, and making use of relations
(5.13), (5.10) and (5.3), we easily see that

10;(0X) | z20.m: 51 () 42201501 () < € (5.16)
whence (5.12) is improved to
o-xe = ox  in Cy([0, T]; L(Q)) (5.17)
and, consequently, by (5.5), we also have
0-x-u. — oxu weakly in L?(0,T; L3(€; R?)). (5.18)

In order to pass to the limit in (5.8), we use ¢ as a test function and observe that
the right-hand side of (5.15) can be transformed into

T T T
E/ /(ﬁQEAXdedt—I-ZE//stzxs'vx(bdxdt—‘rf//QSX5A¢d$dt, (5.19)
0Ja 0Ja 0 Jo

where all terms clearly go to 0 for ¢ as above.
Next, we take the limit in (5.9), which is more involved. First, we observe that

Wi(x.) — Wi(x) weakly-(*) in L>(0,T; H'()). (5.20)
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Thus, due to (5.4),
0-Wi(x.) — oW(x) weakly-(*) in L>(0,T; L¥(%2)), (5.21)
and, thanks to (5.17),
0-x-Wi(x:) = exWi(x)  weakly-(") in L*(0,T; L*(%2)). (5.22)

At this stage, we follow step by step the procedure developed in Sec. 2.6 of Ref. 3.
Accordingly, we focus on the principal steps only. First, we claim that, by (5.11) and

(5.17),
T T
//szdxdta//g)(?dxdt. (5.23)
0 Jo 0 Ja

As a matter of fact, we can simply check that
xZ— x? weakly in L2(0,T; H'(Q)), (5.24)
whence

ox? —ox® = (ox? — 0.x%) + (0-x2 — 0-X-X) + (0-xX — 0x?), (5.25)

where the last three summands on the right-hand side go to 0 due to (5.11), (5.17)
and (5.24). Thus, it follows that

X — x strongly in LP(Q7) for all p € [1,00), (5.26)

where Q+(Q%) denotes the subset of (0,T) x Q where o > 0 (¢ = 0). Moreover, since
o is non-negative, it is clear that

0. — o strongly in LP(QY) for all p € [1,6). (5.27)
Now, we may rewrite (5.9) as

Oclte = 7AXE + Qng(Xs) + hé(gs)a (528)

where we have set hs(s) = s(g15(s) — g2.5(s)). At this level, taking the limit (in the
sense of distributions) yields

o = —Ax + oWi(x) + hs(o)- (5:29)

Now, as in Sec. 4.3, we test (5.28) by x. and integrate over (0,7) x €. It is clear,
thanks to (5.20)—(5.22), that the desired conclusion

X. — X strongly in L2(0,T; H'(2)) (5.30)

follows as soon as we can prove that

// 21X — hs(0)x)dz dt = // ofix — hs(0)x)dz dt. (5.31)
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Note that, by (5.27),

/ hs(0)x dx dt :/ hs(o)x dx dt = // hs(0)x dzdt = 0, (5.32)
Q7 Q7 T

whereas, thanks to (5.26),

//]@dedt//mmdxdt. (5.33)
II

and, on the other hand,

Ih

Moreover, still by (5.26),

I

Thus, collecting (5.32)—(5.36), we get (5.31), and, consequently, (5.30). More-
over, we arrive at the relation

Analogously,

opx dzdt = //QO opux dzdt =0 (5.34)
T

0
T

opx dedt = // opx dzdt = 0. (5.35)
Q

0 0
T T

opxdzdt = // oy da dt. (5.36)
Q

i i
T T

o1 = —Ax + oWi(x) + hs(o). (5.37)

In order to identify the remaining two terms, we need strong convergence of ., whose
proof will be discussed later.
Finally, we pass to the limit in the momentum equation, that now reads

T
/ / (ocu. - Oy + 0:[u. ® ] : Vyp)dadt
0JQ

T
=//W%&NWJVMM&—/mwmw&M% (5.38)
0JQ Q

for ¢ as in (2.12). Actually, it follows from (5.38) that J;(p.u.) is uniformly bounded
in some negative order Sobolev space. Thus, using (5.4) and (5.5), we conclude as
before that

o-u. — ou in C,([0,T); L™/7(9)) (5.39)
as well as
o.(u. ®u.) — p(lu®u) weakly in L2(0,T; L*3(Q)). (5.40)

Next, thanks to (5.5) and (5.30), the tensor T can be treated as in Sec. 4.4, with the
exception of the pressure term ps(g., x.), whose treatment also requires the strong
convergence of g,.
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5.3. Conclusion of the proof

Our main task is to obtain strong L!-convergence of the densities g.. For the sake
of clarity, we just give the highlights of this procedure, referring to the next
section where the same arguments will be repeated (in fact in an even more delicate
situation).

e Asafirst step, we proceed as in Sec. 6.2.1 below, i.e. we use the analogue of the test
function in (6.24). By just adapting the notation, we then arrive at the analogue of
(6.26). In the present situation, thanks to (3.8)—(3.9), this gives in particular

p(o-,x.) — plo,x) weakly in LOFV/((0,T) x Q). (5.41)

e Second, we have to perform Lions’ argument as in Sec. 6.5. Following step by step
that procedure, we then arrive at a pointwise (a.e.) convergence o, — o, which
permits in particular to identify the remaining limits in (5.37) and (5.41). The only
difference with respect to estimate (6.45) consists in the presence of two other
terms

T
- / ¥ / cou. -V, A (div, (10V,0.))da db
0 Q

and

T
. / ¥ / £V,0.V,u. - VoA (1go )de dt,
0 Q

which tend to zero as ¢ N\, 0 due to (5.15), (5.39) and (5.45).

Having the strong convergence of g, at our disposal, it is now clear that we can take
the limit € \, 0 in all equations. To conclude, it remains to pass to the limit in the
energy inequality (cf. (4.46)). To do this, we can use the argument similar to that in
Sec. 4.5. The main difference is that now we also have to test (5.1) by o. and deduce
that

1d

1 .
9 dr QQ? dx+5/ﬂ|vxg€|2dx < —§/Qg§|d1vzu6|dx‘ (5.42)

This immediately leads to
61/2||Qs||L2(o,T;H1(Q)) <c (5.43)

More precisely, integrating (5.42) in time, we obtain

t 1 1
5//|Vzgg|2dxds§——/gf(t)dw—k—/g%_&dx
0J/0 2 Jq 2J)o 7

]. T 2 4.
- = ozdiv,u, dz ds, (5.44)
2 0JQ
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so that, taking the limsup as € \ 0, using semicontinuity of norms w.r.t. weak
convergence, and comparing the result with the limit momentum equation (5.7) (in
the renormalized form (5.7) with b(p) = o), we may infer that

e'2p. — 0 strongly in L?(0,T; H'(Q)). (5.45)

Thus, the limit energy inequality can be computed as in Sec. 4.5.

6. Artificial Pressure Limit

Our ultimate goal is to let 6§ \, 0. To this end, consider a family {5, us, Xs}s-0 of the
approximate solutions constructed in the previous part. Accordingly, we choose the
initial data in (3.1) in such a way that

essinf oy < 095(x) < esssup oo <7, T €, 005 = -
’ Q
essQinf Xo < Xos(x) < esssup o, € Q, xo5 — Xoa-€. in €, (6.1)
Q
uys — Uyin L*(QR?)
as 6\, 0.

In addition, it is a routine to construct a family of convex functions Ls € C*(R)
such that
Ls(x) / L(x) for any x € (0,1), (6.2)
and
Li(x) > L'(1—6) forall x>1-46, (6.3)
Li(x) <L'(6) forall xy <6

for a suitable sequence ¢ \, 0. Consequently, in accordance with hypothesis (2.2), we
can find the functions g; s, g2 5 such that (3.4)—(3.6) hold, and, in addition,

gis(0) /" a;log(o) for o>1,

9is(0) \ya;log(p) for0<p<1 } as 6\, 0,i=1,2, (6.4)

gls(0) H% in C(0,00) asé\,0,i=12. (6.5)

Finally, we take

P(p) it0<p<r—4¢,

P6(9)25@2+{P(r—5)+([9—r—11+)v if 0> -6,

6.1. Uniform bounds
To begin, we recall (cf. (4.1)) that the functions y; satisfy the uniform bound
6 < xs(t,x) <1—6 foraa.te(0,T)xQ. (6.7)



Math. Models Methods Appl. Sci. 2010.20:1129-1160. Downloaded from www.worldscientific.com
by UNIVERSITY OF PAVIA LIBRARIES on 11/06/12. For personal use only.

Analysis of a Phase-Field Model for Two-Phase Compressible Fluids 1149

Moreover, the energy inequality

Tr
/ /2 {g(galud? + | Voxsl?) + géfé(g(g,xtg)} dzoyp dt
0 J¢
T
- / /Q [Ss(Vous) « Vous + || *Jdae) dt
0

1
> _/9 [5(90,6|u0,6|2 + | Vaxosl?) + Q&f&(QO,&XO,&)] dz (6.8)

holds for any ¢ € C*[0,T), v > 0, ¥(0) = 1.
It follows from hypothesis (2.15), (3.1) and (6.1) that

5 <c

1
/Q {— (20.sla0s1* + IVaxos|®) + esfs(00s; Xo,a)] dz

where the constant is independent of §. Consequently, we deduce the following
uniform estimates:

{\/osus}s-o bounded in L>(0,T; L2(Q;R?)), (6.9)
{Xs}s>0 bounded in L>(0,T; H*(Q)), (6.10)
{0sTs(0s)}s=0 bounded in L>(0,T; L1(Q)). (6.11)
In particular,
{0s}s>0 Dbounded in L*(0,T; L7(£2)). (6.12)
Moreover,
{us}s=o is bounded in L2((0,T) x Q), (6.13)
and, as a direct consequence of Korn’s inequality and hypothesis (2.8),
{us}sso is bounded in L*(0,T; H*(Q;R3)). (6.14)
Now, it follows from (2.10) and the uniform bounds (6.12), (6.14) that
2 — 0 i Cuea([0,T1; L7(2)), (6.15)
u; —u  weakly in L2(0,T; Hg (% R?)), (6.16)

at least for suitable subsequences. Similarly, (6.10) yields
Xs — x weakly-(*) in L>=(0,T; H'(12)), (6.17)
where, as consequence of (6.11), (4.1),
0<o(t,x) <r foraa.tz, (6.18)
0<x(t,z) <1 fora.a.t,uz. (6.19)

As a matter of fact, (6.18) follows as the functional on L2((0,T) x ) associated to
the function Zs(r) = rT's(r) is “essentially” convex and converges to Z(r) = rI'(r) in
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the sense of Mosco (cf. Ref. 22 and Proposition 3.19, p. 297 and Theorem 3.20, p. 298
in Ref. 5). Thus, (6.18) follows from (6.15), (6.11) and the lim inf-inequality

/ / o)dx dt < hmlnf/ /25 0s)dx dt < co. (6.20)

The next step is to multiply (3.18) by F(L(xs)) and integrate by parts to obtain
| PRIV x>+ L) F(L ()

= /Q (0sus F(L(xs)) + 050" (xs) F(Ls(xs)) + 06(92,5(05) — g1,5(0s)) F(Ls(xs)))d,

where F is a non-decreasing function on R. Taking F(2)z ~ |2|**! for large values of
|z|, we can use the uniform bounds established in (6.12), (6.13) in order to deduce
that

T
/ /gé\Lg(X(g)W“ dxdt < ¢ uniformly with respect to 6 \ 0, (6.21)
0J0

where
0<pB=p(r) /1 provided vy — oo in (6.6).
Thus going back to (3.18) we may infer that
{Axs}ss0 is bounded in LY((0,T) x ) where 1l <« /2 for v — co. (6.22)

Relations (6.10), (6.22), together with the standard elliptic estimates and a simple
interpolation argument, yield

{V.Xs}s>0 bounded in L4((0,T) x ;R?) for a certain q > 2 (6.23)

provided the exponent + in (6.6) was chosen large enough.

2. Refined pressure estimates

One of the principal difficulties in the proof of Theorem 2.1 stems from the fact that
the uniform bounds established in the previous part do not imply, in general, any
uniform estimates on the pressure ps(0s, Xs), not even in the space L'((0,7T) x Q).

6.2.1. Integrability of the pressure term
Following the strategy of Ref. 14, we use the quantities

o= w<t>6[b<g5> -l b(m)das} L eor0,T), (6.24)

as test functions in the weak formulation of the momentum equation (2.12), where
the symbol B~ div,! denotes the integral operator introduced by Bogovskii.”
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The operator B assigns to each ge LP(Q) with [,gdz =0 a solution B[g] €
W, (Q; R3) of the problem
div, Blgl =g inQ, Bgllpn = 0.

It can be shown that B specified in Ref. 7 is a bounded linear operator acting on L4((2)
with values in WOI”I(Q; R3) for any 1 < ¢ < oo (see Galdi,'” Chap. 3), and, moreover,
B can be extended as a bounded linear operator on the dual space [W14(2)]* with
values in L7 (Q;R?) for any 1 < ¢ < oo (see Geissert, Heck and Hieber'®).

We recall that g5 and ug, for any ¢ € C2([0,T) x Q) and any b € W1*[0, 00),
satisfy the renormalized equation (5.7).

With (5.7) at hand, we can use the quantities ¢ specified in (6.24) as test functions
in (2.12) to obtain

/Oqu/Qpé(Q&Xé) [6(95) - ﬁ/ﬂb(g(g)(y) dy]dx dt = Zﬁglé (6.25)

T 1
Ly = /0 " /Q Sy : VzB[b(Qé) @ /Q b(@&)dy} dedt,

T 1
Iy 5 = —/0 lﬁ/ﬂ 0s(us ®ug) - VB |:b(Qé) — ﬁ/{zb(ga)dy] dz dt,

T
L= —/0 3#/1/Q Qéuo"B[b(Q&) —ﬁ/@b(gﬁ)dy} dzdt,

T
I s = / 1/1/9 0sus - Bldiv, (b(0s)us)|dx dt,
0
and

T
fos = / 1/1/9 osus - B[(b'(05) 05 — b(05))div,us
0
1 .
) (b'(0s)0s — blos))div,us dy} dz dt.
Q

Taking b(p) = o, and using the uniform bounds established in (6.9)—(6.23),
together with boundedness of the operator B in L7 and [W 14]*, we deduce, exactly as
in Ref. 14, that all integrals I; 5,7 = 1, ..., 6 are bounded uniformly for 6 \, 0 as long
as the exponent 7 in (6.6) is large enough. Consequently, we obtain

r 1
’/ /%(Q&X&) {Q& ——/ Qé(y)dy] dxdt‘ <c,
0 Jo 12| Jo

with ¢ independent of § \ 0.
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Now, it follows from (6.1) that

/ - 1/ dz = my <
] Jo @104 gy Jy e de = me <
r 1
//9175(957)(5) (Qg—ﬁ/gzg(g(y)dy)dxdt:J17,5+J275,
0

1
Jis = / Ps(0s5 Xs) (95 “Ta Qé(y)dy> dz dt
{os<(ms+r)/2} | l Q

J2,5=/ Ps(0s: Xs) ( %~ 1q /95 )dxdt
maWHW} )]

T —mg

> 5 / ps(0s, Xs)dx dt.
{os>(ms+r)/2}

Since 2 is a bounded domain, the integrals J; 5 are evidently bounded, and we may
conclude that

{ps(0s, xs)Ys>0,  {Ps(0s,X5)0s}6=0 are bounded in L*((0,T) x ), (6.26)

uniformly w.r.t. 6 \ 0.

therefore

with

6.2.2. Equi-integrability of the pressure term

Estimate (6.26) is still not sufficient for passing to the limit in the pressure term. In

order to establish at least weak convergence of the pressure, we need equi-integr-

ability of the family {ps}s-o. To this end, we make use of hypothesis (2.7).
Analogously as in the previous section, we take the quantities

) = 608 o) = o [ mten)a] (6.27)
with ¢ € C(0,T),
B B log(r — ) if p<r—34,
1o = 1o(0) = { log () otherwise,

as test functions in the momentum equation (2.12).

As P satisfies hypothesis (2.7), and P is given by (6.6), there are constants ¢; > 0,
¢y such that
!

ﬁ—CZ fOrallOSQST’—é,
r—o

[s(o) >

in particular,

Ls(0s) > c1(q)ns(os)|? — co(q) for any 1 < g < oo, (6.28)
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and, similarly,

Ds(0s) = c1|ns(0s)|* — cas (6.29)

where I's is given through (3.7).
Thus, exactly as in the previous section, we deduce a uniform bound

T
/ / Ips(0s)ns(0s)|dzdt < e, ¢ independent of 6\, 0, (6.30)
0 Jo

as soon as we are able to control the integrals on the right-hand side of formula (6.25).
We check easily that the most difficult term reads

T
Tos = /0 /(2¢Q5u6 - Bl(n's(0s) 05 — ms(0s))div,us
1 , '
_ ﬁ/Q (7's(0s) 05 — ns(0s))div,ug dy]da: dt. (6.31)

In accordance with the uniform bounds established in (6.9), (6.11), (6.14), we can
use (6.28), (6.29) in order to obtain that

‘B {(77/5(95)@6 — ns(0s))divyus

— (12|/Q (15(0s) 05 — 15(0s))div,us daz] < c(9)

L2(0.T5L4(xR?))
for any ¢ < 3/2.  (6.32)

Indeed we have used the embedding L!(Q2) — [W14]*(Q) for ¢ > 3, together with
the result of Geissert et al.'® on boundedness of the operator B : [W14]* — L.

On the other hand, seeing that H!(Q2) — L5(Q2), we can take v > 6 in (6.6) in
order to control the momentum gsus by the help of the energy estimates (6.9)—
(6.14). Consequently, the integrals I s are bounded uniformly for ¢ ™\, 0. Thus we
have shown (6.30).

Estimate (6.30) implies equi-integrability of the family {ps(os, xs)}s>0 in the
Lebesgue space L!((0,T) x Q); whence we may conclude that

ps(0s,Xs) — p(o,x) weakly in L'((0,T) x €). (6.33)

6.3. Convergence of convective terms

At this stage, we are ready to perform the limit 6 *\, 0 in the approximate equations and
to identify the limit system. We start with the convective terms that can be handled
in a rather uniform way repeating essentially the arguments of Secs. 4.4 and 5.2.

To begin with, relations (6.9), (6.15), (6.16) give rise to

osus — ou weakly-(*) in L>(0,T; LP(Q;R3)) for a certain p > 6/5
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provided v > 0 is large enough. This can be strengthened to
osus — ou  in Cy([0,T]; LP (% R?)) (6.34)

by means of (2.12). Thus the same argument leads finally to
0sus ®us — pu®@u  weakly in LP((0,T) x Q;R3*%)  for a certain p > 1. (6.35)

In the same fashion, relation (6.17) yields
2sxs = ox i Cy([0,T]; L7(9)) (6.36)
and

0sXsUs — oxu weakly in L2((0,T) x Q;R?). (6.37)

Finally, the same argument used to deduce (5.23) yields
T T
| [ el dsar— [ oacat
0Ja 0Ja
in other words

Xs — X a.a.in the set {(¢,z) € (0,T) x Q| o(t,x) > 0}. (6.38)

6.4. Strong convergence of the extra stress

Following the method developed in Ref. 3 we show strong convergence of {V_xs}s>0-
The first part of the argument goes along the lines of Sec. 5.2. First, we let § \ 0 in
(3.18) to obtain

//gug@dxdt //sz V,pdzdt

+/o /Q(QL@'(W — D009 + 2(90(@) — 910(@)))dz dt

for any sufficiently regular test function ¢, where the bars denote weak limits in L.
Note that {0sL%(xs)}s>0 is bounded in L?((0,T) x ) for a certain p > 1 as a con-
sequence of (6.12), (6.21). In particular, taking ¢ = x we get

T T Tpe
//deﬂcdt://vwx-vmxdxdﬂr/ /(QLQ(X)X
0JQ 0JQ 0JQ

— ob'(x)x + 0(92,5(0) — 91,5(0)) x)dz dt. (6.39)

On the other hand, we also have

T T Te
/ / opx dz dt = hm/ / Va.xs - Vaxsdedt + / / (oL5(x)x
0Ja =0J0 Ja 0Ja

—ob'(x)x + 0(92,5(0) — g1.6(0))x)dz dt. (6.40)
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Now, it follows from (6.38) and the uniform bounds (6.12), (6.13) and (6.17) that

opx = opx, ob'(x)x = ob’'(x)x and

0(g2.6(0) — g1.5(0))x = 0(92,5(0) — g1.5(0)) x-

At this stage, the above procedure must be modified as the terms L(;) are no
longer uniformly bounded. We observe, however, that

T T
lim//g(ng(th)X&dxdt://QL:S(X)dedt.
=0Jo Ja 0 Jo

Indeed,

T
//Qé‘Lg(X&)X{sdxdt:// QéLg‘(X(s)X(sdl’dtJr// 05 L5(xs)xs d dt,
0 Ja {0>0} {o=0}

where, as a consequence of (6.38),

// 0sLb(xs) s de dt — // o700 x da dt,
{0>0} {0>0}

while, in accordance with (6.12), (6.21),
/ /{ 0Ll < o} L0l o]y — O
0=0

as 6 \, 0.

In view of the previous arguments, we then arrive at
T T
lim/ / |V, xs|2da dt = / / |V, x|?dz dt;
=0.Jo Jo 0Jo

Vaxs — Vaex  (strongly) in L2((0,T) x ;R?). (6.41)

To conclude this part, we remark that regularity properties (2.11) and (2.14) can be
recovered a posteriori by testing (the limit of) (3.18) by a suitable truncation of
W'(x) and then letting the truncation parameter go to 0 in a standard way (the use
of a truncation seems necessary since W’(x) a priori could not have a sufficient
regularity to be used as a test function).

in other words,

6.5. Strong convergence of the density

In order to complete the proof of Theorem 2.1, we have to show that

p(o,x) = p(o;x)

in (6.33). To this end, we need strong (a.a. pointwise) convergence of {gs}s-0-
To begin, we use the renormalized continuity Eq. (5.7) to deduce (cf. p. 140 of
Ref. 12)

/Q(glog(g) — olog(o)) (7, )dz + /OT/Q (odivyu — pdiv,u)dzdt =0 (6.42)
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for any 7 > 0, where, as always, we have used the bar to denote weak limits in L! of
sequences of composed functions.

On the other hand, as the densities g5 are bounded in L>(0,T; L7(Q)), with v
large enough, we can use directly the procedure of Lions,?’ together with the
necessary modifications introduced in Ref. 13 to handle the variable viscosity coef-
ficients, to establish the “weak continuity” of the effective viscous pressure, in par-
ticular,

/()T/ng(g v(x) + 77(X)> (ediv,u — odiv,u)dz dt

> lirénionf//§(p5(95,xﬁ)95—p(Q,x)Q)dxdt
- 0J9Q

for any £ € C°(Q2),£ > 0. (6.43)

The proof of (6.43) is tedious but nowadays well understood (see Ref. 13). The
basic idea is to use multipliers of the form

o(t,x) = p(t)E(x) VA g, ot x) = ¥(t)E(x)V,A 1],
Y e Cr0,T), £e€CX(Q), (6.44)

as test functions in the momentum equation (2.12) and its asymptotic limit for 6 — 0,
respectively. Here, the symbol A ~! stands for the inverse of the Laplacian considered
on the whole space R3.

After a straightforward manipulation, we obtain

T
/ 3t¢/ Eosus - V, A7 H1gg)dx dt
0 Q
T
— / w/ Eosus - VA div, [osus]dz dt
0 Q
T
4 / ¥ / 0s(05 ® 1y) : (V.6 ® V, A~ [Lggs])dz dt
0 Q
T
+ / 1/1/ Cos(us ®ug) : V,V,A 1o 0s]dx dt
0 Q
T
4 / " / ps(05: x5) V€ - Vo A~ 1o gs)dz dt
0 Q
T
+/ ¢/Q€P(s(9a‘,x(s)95d$dt
0
T 2
= [0 [ w0 | (T + Fiws - Saiveut ) V| - V.8 Hraplaoat
0 Q

T 2
+ / " / u(xa»:(vxuﬁv;uﬁ —3divxué~ﬂ> V.V, A 1gg)de dt
0 Q
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T
i / dj/ n(xs)div,us (Vo€ - VoA g gg] + £ div, VA 1o g5] ) dar dt
o Ja
T vz 12
! / w/ﬁ [<|2X[§|H —Vaxe ® VM&) vrf} -V, A 1ggs]da dt
0

T 2
+ / (0 f(vmeH = Vx5 ® VzX&) : V, VA 1 gs]dz dt,
0o Ja
(6.45)

and
T T
/0 8t¢/ﬂf@2'va_l[1QQ]dwdt—/o w/Qfgu-VzA‘ldivz[gu]dxdt
[ o ws) (V.60 V.A Log)dodr
0 0

T
+ / 1/)/ o(u®@n) : V,V,A 1 [1qo|dz dt

/@Z’/ plo, x) V€V, A [1Qg]dxdt—|—/ ) fp X)odx dt
- [Tof x >[(V wt Via = il )V,] V.4 Logldz
/ 1/)/ <Vmu+V§u—§divzuH> 1 V.V, A 1goldz dt

+ / o [ H00d (.6 VA [Log) + Ediv, T, A [Igg))dedt

2
/w/[(vmx H—Vxx®sz) zs} VA [1gglde dt

/ w/ (vIX —V,x® me> : V.V, A 1goldz dt. (6.46)

Now, relation (6.43) can be deduced by letting 6 \, 0 in (6.45) and comparing the
resulting expression with (6.46). This nontrivial step is the heart of the existence
theory for the barotropic Navier—Stokes system developed by Lions*® and extended
to variable viscosity coefficients in Ref. 13. The reader may consult Sec. 3.3 of Ref. 3,
for an adaptation of this method to the present problem. Let us point out only that
the main ingredient is the so-called commutator lemma:

Lemma 6.1. (See Lemma 4.2 of Ref. 13) Let w € W'P?(R?) and V € L*(R3;R?),
where p > 6/5. Then there exists w = w(p) > 0 and q(p) > 1 such that

[V, A7 div, [wV] — wV, A div, [V][[eomsrs) < c@)wllw @) V] L2 @ers)-
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Consequently, in order to show strong convergence of the densities, it is enough to
observe that

ligniglf//gﬁ(pa(g(s,xé)pa —plo,x)e)dzdt >0
- 0
for any £ € C°(Q2), £>0. (6.47)

Indeed, in case (6.47) holds, it follows that [, olog(o)dz — [, 0log(0)dz a.a. in
(0,7) and so gs — p a.a. in (0,7) x Q.

In view of (6.4) and strong convergence of {x;s}s-o established in (6.41), relation
(6.47) follows as soon as we observe that

hmlnf//fPé 0s)0s — P(0)o)dzdt >0 for any £ € C°(Q), £>0. (6.48)

To see (6.48), it is enough to realize that, due to (6.6), o — Ps(p) are non-
decreasing (for o > 0) for any fixed § > 0, and P, > P; provided a < 3; therefore

hmlnf/ /E Ps(05)05 — P(0) 0)dw dt
> liminf/ /f Py(05)05 — P0) 0)da dt

6—0

/ /f ))gdxdt for any fixed 3,

where the last inequality follows from monotonicity of Pj.
However,

W—WHO in L1((0,T) x Q) for 3 — 0,

as a direct consequence of the equi-integrability property of the pressure established
n (6.30).
Summing up relations (6.42)—(6.47) we conclude that

0s— o0 aa. in(0,7)xQ and p(o,x) = p(o,X),

which completes the proof of Theorem 2.1.
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