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Abstract

A singular parabolic system describing the thermal diffusion in a substance possibly subject to a phase transition is
introduced. The physical process is described by the variablesϑ (absolute temperature) andχ (order parameter). The latter
may have, or not, conserved total mass with respect to time. In both cases, after recalling and sometimes improving some
known well-posedness results, the long-time behavior of the system is studied. It is shown that the process is dissipative and
the compact universal attractor is constructed. It turns out to attract the trajectories of the system in a rather strong metric
which is strictly linked to the constraints imposed to both variables. The techniques used in the proofs seem likely to be
applied to other types of evolution systems containing maximal monotone nonlinearities.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper we consider some singular parabolic systems coming from the so-called Penrose–Fife model for
phase transition phenomena introduced in[20,21]. More in detail, we address the problem of existence of the
universal attractor for a rather general class of these models. Moreover, it is worth remarking at once that the
techniques used in the present analysis seem suitable to be applied to other types of singular evolution systems.

In order to introduce the precise mathematical problem, let us consider a smooth bounded containerΩ ⊂ R
d ,

1 ≤ d ≤ 3, occupied by the substance undergoing the phase transition. Nameϑ andχ the basic state variables of the
process, corresponding to theabsolutetemperature (hence,ϑ > 0) and to the order parameter, respectively. Then,
the energy balance equation, describing the evolution ofϑ, can be written in the form[7,9]

∂t(ϑ + λ(χ))−�α(ϑ) = g, (1.1)
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whereg is the volumic heat source,λ(·) a smooth function accounting for the latent heat, andα : (0,+∞) → R is
an increasing and concave function such that

α(r) ∼ −1

r
for r ∼ 0, α(r) ∼ r for r ∼ +∞. (1.2)

Then,(1.1) is coupled with the kinetic equation for the phase variable. We will consider both thenonconserved

∂tχ−�χ+ β(χ)+ γ(χ) � −λ′(χ)
ϑ

(1.3)

and theconservedcase

∂tχ−�w = 0, (1.4a)

w ∈ −�χ+ β(χ)+ γ(χ)+ λ′(χ)
ϑ

. (1.4b)

In both(1.3) and (1.4b), β is taken as a generalmaximal monotone graph, possibly multivalued, coming from the
convex part of adouble-wellfree energy potential[20] andγ is a smooth function accounting for its nonconvex
part. Moreover, relation(1.3) is assumed to be complemented by the homogeneous Neumann boundary condition
for χ, while in the case of(1.4) we take such conditions both forχ and for the auxiliary unknownw, generally
calledchemical potential. Furthermore, third type conditions are assumed forϑ and the whole systems(1.1) and
(1.3)and(1.1) and (1.4)are complemented with the Cauchy conditions forϑ andχ.

Of course, the singular character of the systems above is given by the presence of the constraints 1/ϑ, forcing
ϑ > 0, andβ(χ), that can be chosen to forceχ to attain solely values belonging to a bounded interval ofR. The
presence of this kind of nonlinearities is the main difficulty of(1.1) and (1.3), (1.1) and (1.4), and the related results
on well-posedness are relatively recent. Actually, the nonconserved system(1.1) and (1.3)has been first addressed
in the paper[7], where existence of a global solution has been proved for a much wider class of functionsα than
those given by(1.2), provided thatλ is Lipschitz continuous along with its first derivative. In caseα is chosen as
in (1.2), further regularity and uniqueness of the solution have been shown in[9]. In [22] these results have been
extended to the fourth-order (conserved) case(1.1) and (1.4)in a more general setting possibly includingthermal
memoryeffects.

Taking the results of[7,9,22]into account, in this note we address some further questions related to the systems
above, with the main task of proving the existence of the universal attractor in both the nonconserved and the
conserved case. We have to notice that, while several papers (see, e.g.,[2–4,10–12,17]) have been devoted to the
analysis of long-time behavior of phase-field models ofCaginalp[8] type, it seems that very few results have been
obtained, up to now, for the parabolic Penrose–Fife models. This seems to be due to the standard (cf.[16]) choice of
asingularheat flux law of the formα(r) ∼ −1/r, which gives rise to a strong lack of coercivity of the system with
respect toϑ. Actually, as far as we know, this form of the heat flux has been dealt with only in[13,14,23,24]. More
in detail, in[14] the existence of aweak form(see below) of the universal attractor is shown in the nonconserved
case, provided that a zero-order dissipative termεϑ for smallε > 0 is added on the left-hand side of(1.1). In the
same setting, but only referring to one space dimension, the structure of the attractor is further investigated in[13],
where the existence of aninertial set [26, Section VIII] is shown. We have to notice that the termεϑ in [13,14]
plays an analogous role as our heat flux law(1.2) in providing further dissipativity for the unknownϑ.

To our knowledge, the system(1.1) and (1.4)with α(r) ∼ −1/r, and without the addition of the dissipative
termεϑ, has only been studied in the recent papers[23,24], dealing with the conserved and the nonconserved case,
respectively. In[23,24] the existence of a uniform attractor is proved in one space dimension; however, a strong
constraint is imposed a priori on the initial data, which have to be chosen in a very small phase space. We observe
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that a functionλ of quadraticgrowth at infinity is allowed in[23,24]; however, the analysis is limited toβ(r) ∼ r3,
i.e., to the standard double-well case[8].

Due to the difficulties related to the choiceα(r) ∼ −1/r, in this note we address the diffusion law(1.2), which can
be motivated by thermodynamical considerations (cf.[7]) and guarantees to the system a good parabolic structure
with respect toϑ. On the other hand, before addressing the question of existence of the attractor, we have to
discuss in some detail the properties of the semigroups associated to the systems(1.1) and (1.3)and(1.1) and
(1.4). In this concern, we show some continuous dependence theorems which turn out to improve some results in
[9,15,22]referring to systems very similar to our ones. Namely, we are able to prove Lipschitz continuity of the
semigroup associated to the nonconserved system with respect to a weak metric (cf.(3.24)). In the conserved case,
as in[4], we just have 1/2-Hölder continuity, unless some growth conditions are assumed onβ. These theorems,
beyond constituting a basis for the subsequent asymptotic analysis, appear to deserve an independent interest,
indeed.

In the second part of the paper, we prove existence of the universal attractor both for the system(1.1) and (1.3)and
for (1.1) and (1.4)in the three-dimensional setting. In order to unify these situations, we limit ourselves to consider
affinelatent heat functions given byλ(r) = br for b ∈ R. In a forthcoming paper we will deal with a nonlinear (and
possibly quadratic, cf.[20]) λ. However, this seems to work only in the nonconserved case.

We also point out that our analysis is performed in a phase spaceX which is smaller than that considered, e.g., in
[13,14]. Such a setX is chosen precisely as the space of the initial data satisfying the conditions required for having
existence of a solution. It is clear that these conditions strongly depend on the constraints imposed on the variables.
Actually, we are able to prove thatX is a complete metric space with respect to a suitable metricdX, which is
stronger than the metric appearing in the Lipschitz (or Hölder) continuity results since it has to take the constraints
into account. Our choice, however, seems to be an appropriate one, since the semigroups are still continuous (but
no longer Lipschitz or Hölder continuous) indX; moreover, we are able to prove the existence of adX-compact set
whichabsorbsany bounded set ofX. Of course, as a consequence, we obtain the existence of the compact universal
attractorA both in the nonconserved and in the conserved case. The absorbing set constructed in[14] as a subset
of their (bigger) phase spaceZ, instead, is not able to absorb all the bounded set ofZ, but only those subsets which
are bounded with respect to a stronger metric, which is similar to the one of ourX and is related to the energy
functional on which relies the variational structure of the system. This is the reason why the set constructed in[14]
can be defined as aweakattractor, while we are able to construct astrongattractorA, which attracts allX-metric
bounded sets and does this in the proper metricdX.

This approach, which is technically much more complicated since it requires a control of the nonlinear constraints
in the dissipativity estimates, has the advantage of giving more information on the solution. Namely, the metric
dX yields some control on the asymptotic behavior of bothϑ and its inverse, and also of the termβ(χ), which
was not provided by the metric used, e.g., in[14]. Of course, the latter information can be more, or less, relevant
depending on the growth conditions that are assumed onβ. In general, anyway, this reinforcement of the metric
structure of the phase space appears to provide a rather natural framework for studying the dissipativity of parabolic
evolution systems with maximal monotone nonlinearities, and applications to several different physical situations
should certainly be possible. On the other hand, we have to remark that in this setting it does not seem possible
to address the question of existence of an inertial set (cf.[13]), at least using the metricdX. Indeed, the continuity
properties of the semigroups with respect todX as well as the topological structure ofX appear too weak to apply the
related general theory. It might be possible, anyway, to show the existence of some set which attracts exponentially
thedX-bounded set, but with the attraction property holding in some metric weaker thandX.

Here is the plan of the paper. In the next section, we shall present some notations and mathematical preliminaries.
In Section 3we will provide our basic hypotheses on data and give a detailed construction of the phase space for
our analysis. Moreover, we will state our precise mathematical results. The proofs will be achieved inSection 4,
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which is related to the questions of well-posedness and continuity of the semigroups, inSection 5, which regards
dissipativity, and inSection 6, which carries the proof of existence of the attractors.

2. Preliminaries

In this section we introduce some notations and recall some preliminary machineries which are needed to state
our problems in a precise way.

First of all, let us defineΓ := ∂Ω and, fort > 0,Qt := Ω× (0, t). Then, let us setH := L2(Ω), V := H1(Ω),
and endow both spaces with their usual scalar products. We identifyH and its dual, in order that the compact
inclusionH ⊂ V ′ holds and(V,H, V ′) form aHilbert triplet [18, p. 202]. We denote by| · |, or sometimes by| · |H ,
the norm both inH and inHd , by ‖ · ‖ the (usual) norm inV , by ‖ · ‖∗ that inV ′, and by‖ · ‖X the norm in the
generic Banach spaceX. Finally, we indicate by(·, ·), ((·, ·)), ((·, ·))∗, the scalar products inH , V , V ′, respectively,
and by〈·, ·〉 the duality pairing betweenV ′ andV .

Next, for anyζ ∈ V ′ we set

ζΩ := 1

|Ω| 〈ζ,1〉, (2.1)

V ′
0 := {ζ ∈ V ′ : ζΩ = 0}, V0 := V ∩ V ′

0. (2.2)

The above notationV ′
0 is suggested just by the sake of convenience; indeed, we mainly seeV0, V ′

0 as (closed)
subspaces ofV , V ′, inheriting their norms, rather than as a couple of spaces in duality.

We introduce the realization of the Laplace operator with homogeneous Neumann boundary conditions as

B : V → V ′, 〈Bu, v〉 :=
∫
Ω

∇u · ∇vdx for u, v ∈ V. (2.3)

Clearly,B mapsV ontoV ′
0 and its restriction toV0 is an isomorphism ofV0 ontoV ′

0. We denote byN : V ′
0 → V0

the inverse ofB, so that for anyu ∈ V andζ ∈ V ′
0 there holds

〈Bu,Nζ〉 = 〈BNζ, u〉 = 〈ζ, u〉. (2.4)

We also define

W := {v ∈ H2(Ω) : ∂nv = 0 onΓ }, (2.5)

which is a closed subspace ofH2(Ω) by continuity of the trace operator.
By using the Poincaré–Wirtinger inequality we can easily see that the norm(∫

Ω

|∇(Nζ)|2
)1/2

= 〈ζ,Nζ〉1/2 for ζ ∈ V ′
0 (2.6)

is equivalent to the norm‖ζ‖∗ and we will use it, when it is convenient.
Let us now recall some notation and basic concepts from convex analysis. Letπ̂ : R → (−∞,+∞] a convex,

l.s.c. (i.e. lower semicontinuous), andproperfunction. The latter means that thedomain

D(π̂) := {r ∈ R : π̂(r) �= +∞} (2.7)

is not empty. We note thatD(π̂) has to be a convex set, of course. Then, it is well known (cf.[5, p. 43]) that the
subdifferentialπ := ∂π̂ is amaximal monotone graphin R × R. Thedomainof π is defined by

D(π) := {r ∈ R : π(r) �= ∅}. (2.8)

In this situation we will say that̂π is aconvex primitiveof π.
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In the sequel we will also use some spaces ofL
p

loc-translation boundedfunctions; actually, asX is a Banach
space andp ∈ [1,+∞) we set

Tp(X) :=
{
v ∈ L

p

loc(0,+∞;X) : sup
t≥0

∫ t+1

t

‖v(s)‖pX < +∞
}
, (2.9)

which is a Banach space with respect to the natural (graph) norm

‖v‖pTp(X) := sup
t≥0

∫ t+1

t

‖v(s)‖pX. (2.10)

As a generalization of the above definition, we also set, forτ > 0,

Tpτ (X) :=
{
v ∈ L

p

loc(0,+∞;X) : sup
t≥τ

∫ t+1

t

‖v(s)‖pX < +∞
}
, (2.11)

and a seminorm forTpτ (X) is defined by merely mimicking(2.10).
We now recall the statement of the so-calleduniform Gronwall’s lemma(see, e.g.,[26, Lemma III.1.1]).

Lemma 2.1. Lety, a, b ∈ L1
loc(0,+∞) three non-negative functions such thaty′ ∈ L1

loc(0,+∞) and

y′(t) ≤ a(t)y(t)+ b(t) for a.e. t > 0, (2.12)

and leta1, a2, a3 three non-negative constants such that

‖a‖T1(R) ≤ a1, ‖b‖T1(R) ≤ a2, ‖y‖T1(R) ≤ a3. (2.13)

Then, we have that

y(t + 1) ≤ (a2 + a3)e
a1 for all t > 0. (2.14)

Now, let us recall some basic notions on absorbing sets and attractors. Given a strongly continuous semigroup
S(t) on a complete metric space(X, dX), we say thatB0 is anabsorbing setfor S(t) iff:

• B0 is bounded;
• for any bounded setB ⊂ X, there exists a timeTB ≥ 0 such that

S(t)B ⊂ B0 ∀t ≥ TB. (2.15)

Next, a setK ⊂ X is said to beuniformly attractingfor the semigroupS(t) iff for any bounded setB ⊂ X, we have

lim
t→+∞ d(S(t)B,K) = 0, (2.16)

whered denotes theunilateralHausdorff distance of the setS(t)B fromK, with respect to the metric ofX, i.e.

d(S(t)B,K) := sup
y∈S(t)B

inf
k∈K

dX(y, k). (2.17)

Finally, a setK is theuniversal attractorof the semigroupS(t) iff:

• K is attracting and compact inX;
• K is fully invariant with respect toS(t), i.e.S(t)K = K for all t ≥ 0.
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We remark that the universal attractor, if it exists, is certainly unique (cf.[26, Section I.1.3]); moreover, it is a
connected set. Let us finally report the statement of a general abstract criterion[26, Theorem I.1.1]providing a
sufficient condition for the existence of the attractor.

Theorem 2.2. Let S(t) be a strongly continuous semigroup on the complete metric space(X, dX). Let us assume
that:

• S(t) admits an absorbing setB0 (dissipativity);
• for any bounded setB ⊂ X, there existstB > 0 such that⋃

t≥tB
S(t)B is compact inX (uniform compactness). (2.18)

Then, S(t) admits the universal attractorK which is given by

K = ω − lim(S(t)B0) =
⋂
τ≥0

⋃
t≥τ

S(t)B0. (2.19)

3. Main results

We start by stating the precise mathematical formulations of systems(1.1) and (1.3)and(1.1) and (1.4)and
presenting the related well-posedness results. In the sequel we partly follow[7,9,22]. First, let us give our basic
assumptions on data, covering both the nonconserved and the conserved case:

(A1) α ∈ C1((0,+∞);R) is increasing and concave and fulfillsα(1) = 0; moreover, there existc0, c∞ > 0,
2 ∈ C1((0,+∞);R) such that

α(r) = −c0

r
+ 2(r), 2′ ∈ L∞(0,+∞), lim

r↗+∞
2′(r) = c∞; (3.1)

(A2) there existsb ∈ R such thatλ(χ) = bχ for all r ∈ R;
(A3) γ ∈ C1(R), γ ′ ∈ L∞(R), and we setL := ‖γ ′‖L∞(R);
(A4) β is amaximal monotone graphin R × R such that 0∈ intD(β) and 0∈ β(0);
(A5) g ∈ L2(Ω), h ∈ L2(Γ);
(A6) ϑ0 ∈ H , ϑ0 > 0 a.e. inΩ, and logϑ0 ∈ L1(Ω);
(A7) χ0 ∈ V , β̂(χ0) ∈ L1(Ω).

In (A7), β̂ : R → [0,+∞] is the convex primitive ofβ fulfilling β̂(0) = 0.

Remark 3.1. Assumption (A5) could be generalized in several directions; for instance, less regular data, or even
data suitably depending on time, might be considered.

It is clear from (A1) thatα satisfies the following additional properties. First,

α′(r) ≥ c∞ ∀r ∈ (0,+∞), lim
r→0

r2α′(r) = c0. (3.2)

Moreover, there existsc′0 > 0 such that

α′(r) ≥ c′0r
−2 ∀r ∈ (0,+∞). (3.3)
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Let us specify the precise form of the third type boundary conditions complementing(1.1): we assume that for some
n0 > 0 and a.e.t > 0 it is

−∂nα(ϑ) = n0(α(ϑ)− h) onΓ. (3.4)

Consequently, we introduce the operator

J : V → V ′, 〈Jv, z〉 :=
∫
Ω

∇v · ∇z+ n0

∫
Γ

vz for v, z ∈ V, (3.5)

this is indeed the Riesz mapping associated to the norm‖v‖2
J := 〈Jv, v〉 on V , which is equivalent to the stan-

dard one and will be used in place of it, when it is convenient. Finally, we define the generalized heat source
term as

〈f, v〉 := (g, v)+
∫
Γ

hv ∀v ∈ V, (3.6)

indeed, we remark that (A5) entailsf ∈ V ′.
Now, we are ready to recall the result[7, Theorem 2.3]related to global existence and regularity in the noncon-

served case.

Theorem 3.2. Let us assume(A1)–(A7) and take anyT > 0. Then, there exists at least one triplet(ϑ, χ, ξ) such
that

ϑ ∈ H1(0, T ;V ′) ∩ C0([0, T ];H) ∩ L2(0, T ;V), ϑ > 0a.e. inQT , (3.7)

1

ϑ
∈ L2(0, T ;V), (3.8)

χ ∈ H1(0, T ;H) ∩ C0([0, T ];V) ∩ L2(0, T ;W), (3.9)

ξ ∈ L2(0, T ;H). (3.10)

The triplet(ϑ, χ, ξ) satisfies

∂t(ϑ + bχ)+ J(α(ϑ)) = f inV ′ a.e. in (0, T), (3.11)

∂tχ+ Bχ+ ξ + γ(χ) = − b

ϑ
a.e. inQT , (3.12)

χ ∈ D(β) and ξ ∈ β(χ) a.e. inQT , (3.13)

ϑ(0) = ϑ0, χ(0) = χ0 a.e. inΩ. (3.14)

Remark 3.3. Relation(3.12)can be formulated “a.e. inQT ” rather than “inV ′ a.e. in(0, T)” thanks to(3.8) and
(3.9). Moreover, we note that(3.7), (3.8), and (A1) entail that

α(ϑ) ∈ L2(0, T ;V ′). (3.15)

Now, let us come to the fourth-order case; the following result can be proved similarly as in[22, Theorem 2.1],
where a slightly different problem is addressed.
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Theorem 3.4. Let us assume(A1)–(A7) and

(A8) χΩ := (χ0)Ω = 1

|Ω|
∫
Ω

χ0 ∈ intD(β).

Take anyT > 0. Then, there exists at least one quadruple(ϑ, χ,w, ξ) satisfying(3.7), (3.8)and(3.10), and

w ∈ L2(0, T ;V), (3.16)

χ ∈ H1(0, T ;V ′) ∩ L∞(0, T ;V) ∩ L2(0, T ;W). (3.17)

The quadruple(ϑ, χ,w, ξ) fulfills

∂t(ϑ + bχ)+ J(α(ϑ)) = f inV ′ a.e. in (0, T), (3.18)

∂tχ+ Bw = 0 inV ′ a.e. in (0, T), (3.19)

w = Bχ+ ξ + γ(χ)+ b

ϑ
inV ′ a.e. in (0, T), (3.20)

χ ∈ D(β) and ξ ∈ β(χ) a.e. inQT , (3.21)

ϑ(0) = ϑ0, χ(0) = χ0 a.e. inΩ. (3.22)

Finally (cf. (2.1)), we have that

1

|Ω|
∫
Ω

χ(t) = χΩ ∀t ∈ [0, T ]. (3.23)

We remark that the above results neither include uniqueness nor continuous dependence. Actually, uniqueness
has been proved in[9, Theorem 1](nonconserved case) and in[22, Theorem 2.2](conserved case). However, the
results of Colli et al.[9,22], which can deal with a nonlinear (but Lipschitz)λ, hold just under stronger regularity
assumptions on the initial and source data. Thus, we have to provide a generalization suitable to our less regular
setting. In this direction, we present a number of theorems which should make clear the structure of the semigroups
associated to the systems above.

First of all, we state two Lipschitz continuity results, entailing in particular uniqueness of the solution, and holding
for λ(χ) = bχ in a regularity setting compatible with (A1)–(A7). We first address the nonconserved case, where we
can prove the following theorem in the spirit of[14, Theorem 3.1]which should hold, with the proper modifications,
also for more general (e.g., quadratic) functionsλ.

Theorem 3.5. Assume(A1)–(A7). Then, the solution(ϑ, χ, ξ) provided byTheorem 3.2is unique. More precisely,
there existsC > 0 depending only onΩ,T, c0, c∞, andL such that for any two couples of initial data(ϑ0,1, χ0,1)

and (ϑ0,2, χ0,2), denoting by(ϑ1, χ1, ξ1) and (ϑ2, χ2, ξ2) two corresponding solutions to(3.7)–(3.14), for any
t ∈ [0, T ] we have

‖(ϑ1 − ϑ2)(t)+ b(χ1 − χ2)(t)‖2
∗ + ‖ϑ1 − ϑ2‖2

L2(0,t;H) + |(χ1 − χ2)(t)|2 + ‖∇(χ1 − χ2)‖2
L2(0,t;H)

≤ C(‖(ϑ0,1 − ϑ0,2)+ b(χ0,1 − χ0,2)‖2
∗ + |χ0,1 − χ0,2|2). (3.24)
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In the conserved setting the analog of the above theorem holds just for a more restricted class of graphsβ:

(A9) Let β ∈ C1(R) and let us assume that there existscβ > 0,p ≤ 7, such that

β′(r) ≤ cβ(1+ |r|p) ∀r ∈ R. (3.25)

Of course, if (A9) holds, then (A8) is automatically satisfied for allχ0 fulfilling (A7). We have the following theorem.

Theorem 3.6. Assume(A1)–(A7) and (A9) and consider, with the same notation as above, two solutions to the
conserved system. Then, for anyt ∈ [0, T ] we have

‖(ϑ1 − ϑ2)(t)+ b(χ1 − χ2)(t)‖2
∗ + ‖ϑ1 − ϑ2‖2

L2(0,t;H) + ‖(χ1 − χ2)(t)‖2
∗ + ‖∇(χ1 − χ2)‖2

L2(0,t;H)
≤ C(‖(ϑ0,1 − ϑ0,2)+ b(χ0,1 − χ0,2)‖2

∗ + ‖χ0,1 − χ0,2‖2
∗ + |(χ0,1)Ω − (χ0,2)Ω|2), (3.26)

whereC is allowed to depend also on the norms ofχ1 andχ2 in (3.17).

For a general graphβ (i.e. without (A9)) in the conserved setting we just have Hölder continuity, as in[4, Theorem
3.1].

Theorem 3.7. Assume(A1)–(A7) and consider, with the notation above, two solutions to the conserved system,
where both the initial dataχ0,1, χ0,2 fulfill (A8). Then, for anyt ∈ [0, T ] we have

‖(ϑ1 − ϑ2)(t)+ b(χ1 − χ2)(t)‖2
∗ + ‖ϑ1 − ϑ2‖2

L2(0,t;H) + ‖(χ1 − χ2)(t)‖2
∗ + ‖∇(χ1 − χ2)‖2

L2(0,t;H)
≤ C(‖(ϑ0,1 − ϑ0,2)+ b(χ0,1 − χ0,2)‖2

∗ + ‖χ0,1 − χ0,2‖2
∗ + |(χ0,1)Ω − (χ0,2)Ω| + |(χ0,1)Ω − (χ0,2)Ω|2),

(3.27)

whereC is now allowed to depend also on the norms ofχ1 andχ2 in (3.17)and on the norms ofξ1 andξ2 in (3.10).

Looking back to the results stated up to this point, we notice that, in order to have existence, we choose rather
regular initial data (cf. (A6) and (A7)); conversely, the continuous dependence theorems hold with respect to much
weaker norms. Thus, in order to define the phase space for the asymptotic analysis, we have to make a choice
between the less and the more regular setting. Actually, we decide to work with the stronger norms and take

H := L2(Ω)×H1(Ω), (3.28)

which is endowed with the natural norm; moreover, we put

X := {(u, v) ∈ H : u > 0 a.e. inΩ, log− u+ β̂(v) ∈ L1(Ω)} (3.29)

(here and in the sequel(·)− := max{−(·),0} denotes thenegative partfunction). Let us note that(ϑ0, χ0) ∈ X if
and only if it satisfies (A6) and (A7).

In the analysis of the conserved case we will also consider the following family of subsets ofX:

X� := {(u, v) ∈ X : η1 ≤ vΩ ≤ η2}, (3.30)

where

η1, η2 ∈ intD(β) with η1 < 0, η2 > 0. (3.31)

Here and below, the notation� stands for the couple(η1, η2). The following simple property will allow us to use
X andX� as phase spaces for our systems.
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Lemma 3.8. The setsX andX�, ∀� as in(3.31), are complete metric spaces with respect to the distance

dX((u1, v1), (u2, v2)) := |u1 − u2| +
∫
Ω

|log− u1 − log− u2| + ‖v1 − v2‖ +
∫
Ω

|β̂(v1)− β̂(v2)|. (3.32)

Proof. We give the proof forX; clearlyX� is a closed subset of its. Let(un, vn) be a Cauchy sequence inX.
Then, of course there exists(u, v) ∈ H such that(un, vn) → (u, v) in H. Furthermore, we can assume that, at
least for a subsequence (which is not relabeled) such a convergence holds also pointwise inΩ. Then, by Fatou’s
lemma,∫

Ω

log− u ≤ lim inf
∫
Ω

log− un < +∞, (3.33)

which shows thatu > 0 almost everywhere and log− u ∈ L1(Ω). Let us see that the same procedure applies to
β̂(vn). Actually, by convexity and lower semicontinuity ofβ̂, we readily have that̂β(v) ∈ L1(Ω). Moreover, for
a subsequence,β̂(vn) → β̂(v) a.e. inΩ. Indeed, sincêβ is convex and l.s.c., its restriction to the domainD(β̂) is
clearly continuous. Then, if we denote byAn (resp.,A) the set of the pointsx ∈ Ω such thatvn(x) /∈ D(β̂) (resp.,
v(x) /∈ D(β̂)), we have that

|An| = 0 ∀n and |A| = 0, so that| ∪n An ∪ A| = 0. (3.34)

From the above, it is clear thatβ̂(vn) → β̂(v) a.e. inΩ \ (∪nAn ∪ A) and then a.e. inΩ. Finally, since log− un,
β̂(vn) are Cauchy sequences inL1, it is easy to conclude that they (the whole sequences) converge to the respective
limits β̂(v), log− u in L1(Ω), as desired. �

The next step consists in proving the continuity of the map

S(t) : (ϑ0, χ0) !→ (ϑ(t), χ(t)) (3.35)

in the nonconserved case and∀� as in(3.31), the continuity of the (identically defined) mapsS�(t) in the conserved
case. We first state a regularity property as follows.

Lemma 3.9. If χ is as inTheorem 3.2(or as inTheorem 3.4), then we additionally have

χ ∈ C0([0, T ];V) and β̂(χ(t)) ∈ L1(Ω) for all t ∈ [0, T ]. (3.36)

Moreover, for all s, t ∈ [0, T ], there holds the integration by parts formula∫ t

s

〈χt, Bχ+ ξ〉 =
∫
Ω

[ |∇χ(t)|2
2

+ β̂(χ(t))

]
−
∫
Ω

[ |∇χ(s)|2
2

+ β̂(χ(s))

]
. (3.37)

Remark 3.10. The first property in(3.36) is trivial in the nonconserved case, since the spaceH1(0, T ;H) ∩
L2(0, T ;W) turns out to be continuously embedded intoC0([0, T ];V) (see, e.g.,[1, Lemma 6.3]).

Lemma 3.9is the fundamental tool for proving that (cf.Theorem 3.11), starting from(ϑ0, χ0) ∈ X, S(t)(ϑ0, χ0)

belongs toX (resp.,S�(t)(ϑ0, χ0) belongs toX�) for every(and not just a.e.)t ≥ 0. Then, the proof of conti-
nuity of the mapS(t), still provided by the following theorem, requires an additional hypothesis in the conserved
case.
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Theorem 3.11. Assume(A1)–(A7).Then, the mapS(t) defines a strongly continuous semigroup onX for the system
(3.11)–(3.14). Analogously, let us assume(A1)–(A7) and

(A10) 2(ϑ) = c∞ϑ, so thatα(ϑ) = −c0

ϑ
+ c∞ϑ.

Then, for any� as in(3.31)(cf. (A8)),S�(t) is a strongly continuous semigroup onX� for the system(3.18)–(3.22).

Remark 3.12. Lemma 3.9andTheorem 3.11will be proved in the next section. A modification of the argument
that will be used in the proofs yields a further noteworthy consequence, i.e. it can be shown that, for any(u, v) ∈ X,
the solutionS(t)(u, v) belongs to the metric spaceC0([0, T ];X), and the same holds in the conserved case. We will
omit, for brevity, the simple details of the proof of this property.

We now have the basis for discussing the existence of absorbing sets forS(t) andS�(t). First of all, we have to
reinforce (very slightly, indeed) our assumptions onβ:

(A11) Assume that there existκ1, κ2 > 0 such that:

s ≥ κ1r
3 − κ2 ∀r ∈ D(β) ∀s ∈ β(r). (3.38)

Of course, (A11) holds if eitherβ is a polynomial of at least degree 3 orβ is a constraint(i.e. it has a bounded
domain). Assumption (A11) might be further relaxed; however, we keep it in this form since it covers all the
physically meaningful cases.

Let us also note that, by monotonicity ofβ, (A11) entails that, for someκ3, κ4 > 0,

sr ≥ β̂(r) ≥ κ3r
4 − κ4 ∀r ∈ D(β) ∀s ∈ β(r). (3.39)

We can now state our results concerning the dissipativity of the system.

Theorem 3.13. Assume(A1)–(A7) and (A11). Then, the semigroupS(t) possesses an absorbing setB0 which is
bounded in the metricdX.

Analogously, we have the following theorem.

Theorem 3.14. Assume(A1)–(A7), (A10),and (A11). Then, for any� as in (3.31), the semigroupS�(t) admits
an absorbing setB0,� which is bounded in the metricdX (with the bound depending on�).

In the proofs of these theorems, which are presented inSection 5, we will better describe thedX-bounded sets.
As a next step, in order to address the problem of existence of the attractor, we have to introduce two further

spaces (cf.(2.5)) by setting

V :=
{
(u, v) ∈ X : u ∈ V,

1

u
∈ V, v ∈ W

}
, V� := V ∩ X�. (3.40)

We note thatV andV�, endowed with the natural distance

dV((u1, v1), (u2, v2)) := ‖u1 − u2‖ +
∥∥∥∥ 1

u1
− 1

u2

∥∥∥∥+ ‖v1 − v2‖W (3.41)

aremetric spaces. Moreover, the following property holds.
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Proposition 3.15. If D(β̂) is closed, thenV ⊂ X with compact immersion; namely, if (un, vn) is a dV-bounded
sequence inV, then there exists(u, v) ∈ X and a subsequence of(un, vn) converging to(u, v) in dX. If D(β̂) is not
closed, then the same is true provided that there existsc > 0 such that∫

Ω

|(β0)2(vn)| ≤ c ∀n ∈ N, (3.42)

where forr ∈ D(β), β0(r) denotes the element of minimum modulus inβ(r).

Proof. Let (un, vn) bedV-bounded. We first note that, by the standard embeddings between Sobolev’s spaces,

un → u strongly inH and a.e. inΩ, vn → v strongly inV ∩ C(Ω̄) (3.43)

at least for a subsequence (not relabeled). Then, by a.e. convergence and Lebesgue’s theorem,

1

un
→ 1

u
strongly inH and a.e. inΩ. (3.44)

Next, by a.e. convergence,(3.44), the fact that log− r ≤ 1/r for all r ∈ (0,∞), and Lebesgue’s theorem again, we
have also that

log− un → log− u strongly inL1(Ω) (3.45)

(actually, much more is true). Next, let us treat the term withβ̂, starting from the first case (i.e.,D(β̂) closed). Then,
we have already remarked that the restriction ofβ̂ to D(β̂) is continuous. Aŝβ(vn) ∈ L1(Ω) for all n andvn is
continuous, it follows thatvn(x) ∈ D(β̂) for all x ∈ Ω and for alln ∈ N. Then, by the last of(3.43), v(x) ∈ D(β̂)

for all x ∈ Ω; moreover, the sequenceβ̂(vn) is uniformly bounded and tends tôβ(v) uniformly in Ω, which, of
course, is enough to conclude.

Let us now assume thatD(β̂) is not closed, together with condition(3.42). Just for simplicity, assume thatD(β̂)
is an open bounded interval; the other cases are treated similarly. Sinceβ0 is a monotone function, we have

β̂(r) =
∫ r

0
β0(s)ds ∀r ∈ D(β) = D(β̂). (3.46)

Then, for anyp ∈ [1,2) and, e.g.,r > 0, we have that

β̂p(r)

(β0)2(r)
= 1

(β0)2(r)

∣∣∣∣
∫ r

0
β0(s)ds

∣∣∣∣
p

≤
[

1

(β0)(2−p)/p(r)

∫ r

0

β0(s)

β0(r)
ds

]p
≤ rp

(β0)(2−p)(r)
(3.47)

and the latter quantity is clearly bounded away from zero and uniformly inr. Then, using again thatβ̂(vn(x)) tends
to β̂(v(x)) for all x ∈ Ω (just pointwise, since now botĥβ(vn(x)) and β̂(v(x)) might be+∞ for somex ∈ Ω),
(3.47) and (3.42)easily yield that the sequenceβ̂(vn) is bounded inLp(Ω) for all p ∈ [1,2), so that we conclude
again by a.e. convergence and Lebesgue’s theorem. �

Let us note that the result above can be extended in the obvious way to the spacesV�,X�. We finally state our
existence results for the universal attractor, which will be shown inSection 6.

Theorem 3.16. Let (A1)–(A7) and (A11) hold. Then, the semigroupS(t) possesses a compact attractor which is
bounded in the metricdV.

Theorem 3.17. Let(A1)–(A7), (A10),and(A11) hold. Then, for any� as in(3.31), the semigroupS�(t) possesses
a compact attractor which is bounded in the metricdV, again with the bound depending on�.
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4. Continuous dependence

In this section we address the questions of well-posedness and continuous dependence for our systems(3.11)–
(3.14) and (3.18)–(3.22). From now on and up to the end of this note, the symbolc will be used to indicate
the possibly different strictly positive constants appearing in the computations and assumed to depend only on
Ω, 2,L, b, c0, c∞ and, in particular, not on the time variable. When we need to denote some constant (depending on
the same parameters as above) that plays a specific role, a notation likec1, c2, . . . will be used, instead. A constant
noted, e.g., ascσ will be allowed to depend by an additional (small) positive parameter (hereσ). For instance, in
the sequel we will repeatedly use the elementary Young inequality, holding for all positiveσ, in the form

ab≤ σa2 + cσb
2 ∀a, b ∈ R. (4.1)

We start by addressing the nonconserved system.

Proof of Theorem 3.5. Let us set(ϑ, χ) := (ϑ1, χ1)−(ϑ2, χ2). Writing (3.11)firstly for (ϑ1, χ1), then for(ϑ2, χ2),
taking the difference, and integrating over(0, t), we get

(ϑ + bχ)+ J(1 ∗ (α(ϑ1)− α(ϑ2)) = (ϑ0,1 − ϑ0,2)+ b(χ0,1 − χ0,2), (4.2)

where∗ denotes the usual convolution operator on(0, t). Let us multiply this relation byα(ϑ1)−α(ϑ2) and integrate
overΩ. Then, we get, foreveryt > 0,

(ϑ + bχ, α(ϑ1)− α(ϑ2))+ 1

2

d

dt
‖1 ∗ (α(ϑ1)− α(ϑ2))‖2

J = ((ϑ0,1 − ϑ0,2)+ b(χ0,1 − χ0,2), α(ϑ1)− α(ϑ2)).

(4.3)

Moreover, recalling (A1) and(3.2)and using the mean value theorem and(4.1), we readily get

(ϑ + bχ, α(ϑ1)− α(ϑ2)) ≥ 1
2c∞|ϑ|2 − c|χ|2 − c0bχ

(
1

ϑ1
− 1

ϑ2

)
. (4.4)

Next, taking the difference of(3.12), multiplying it byχ, and taking the integral overΩ, by (A3) and (A4) we obtain

1

2

d

dt
|χ|2 + |∇χ|2 ≤ L|χ|2 − bχ

(
1

ϑ1
− 1

ϑ2

)
. (4.5)

Thus, multiplying(4.5)by c0 and summing the result to(4.3), we note that by(4.4) two terms cancel and get

c∞
2

|ϑ|2 + 1

2

d

dt
‖1 ∗ (α(ϑ1)− α(ϑ2))‖2

J + c0

2

d

dt
|χ|2 + c0|∇χ|2 ≤ c|χ|2 + ((ϑ0,1 − ϑ0,2)

+ b(χ0,1 − χ0,2), α(ϑ1)− α(ϑ2)), (4.6)

whence, integrating over(0, t) for t ≤ T , observing that(ϑ0,1 − ϑ0,2)+ b(χ0,1 − χ0,2) is independent of time, and
splitting the last term with respect to the duality betweenV ′ andV , we see that the standard Gronwall’s lemma
applies. Then, to get(3.24)it is sufficient to notice that a comparison in relation(3.11)(integrated in time) gives,
for somec > 0,

c‖1 ∗ (α(ϑ1)− α(ϑ2))(t)‖2
J ≥ ‖(ϑ + bχ)(t)‖2

∗ − 2‖ϑ0 + bχ0‖2
∗. (4.7)

�
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Proof of Theorem 3.6. Let us define(ϑ, χ) as in the proof ofTheorem 3.5and also set, with obvious meaning,
w := w1 − w2. Then, we work on(3.18)as in the nonconserved case and get again(4.3). Next, we put

m0 := 1

|Ω|
∫
Ω

(χ0,1 − χ0,2), χ̄(t) := χ(t)−m0 (4.8)

and note that by(3.36)(which is shown below), it is̄χ(t) ∈ V0 for all t ∈ [0, T ], so that it is possible to test(3.19)
byNχ̄ and(3.20)by χ̄ and take the difference. Noting that by(2.4)the terms involvingw cancel together and using
(3.23) and (2.6)it is easy to obtain

1

2

d

dt
‖χ̄‖2

∗ + |∇χ|2 = −
∫
Ω

(ξ1 − ξ2)χ̄−
∫
Ω

(γ(χ1)− γ(χ2))χ̄−
∫
Ω

bχ̄

(
1

ϑ1
− 1

ϑ2

)
(4.9)

and we have to provide a bound for the right-hand side. Let us start by noticing that, by the compactness of the
embeddingV ⊂ H , it holds

|v|2 ≤ σ|∇v|2 + cσ‖v‖2
∗ ∀v ∈ V. (4.10)

Furthermore, we have that

|m0| ≤ |Ω|−1/2‖χ0,1 − χ0,2‖∗. (4.11)

Let us finally observe that, forN ≤ 3, by(3.17)it follows:

χi ∈ L10(QT ) for i = 1,2. (4.12)

To prove this property, let us consider the family ofs-spaces(·, ·)s introduced, e.g., in[19, Definition 1.1, p. 27].
Then, we look for the largest exponentq such that

(L2(0, T ;H2(Ω)), L∞(0, T ;V))s ⊂ Lq(QT ) for somes ∈ [0,1].

Actually, we note that

(L2(0, T ;H2(Ω)), L∞(0, T ;V))s = L2/(1−s)(0, T ;H2−s(Ω))

and that

H2−s(Ω) ⊂ L6/(2s−1)(Ω),

thus,

2

1− s
= 6

2s− 1
⇒ s = 4

5
,

2

1− s
= 10.

Then, by monotonicity ofβ and relation (A9), we have

−
∫
Ω

(ξ1 − ξ2)χ̄ ≤ cβ

∫
Ω

|χ||m0|(1+ |χ1|p + |χ2|p) ≤ cβ

∫
Ω

(|χ̄| + |m0|)|m0|(1+ |χ1|p + |χ2|p)

≤ cβ

∫
Ω

|m0|2(1+ |χ1|p + |χ2|p)+ σ1

∫
Ω

|χ̄|2(1+ |χ1|4 + |χ2|4)

+ cσ1

∫
Ω

|m0|2(1+ |χ1|2p−4 + |χ2|2p−4) =: I1 + I2 + I3. (4.13)

Next, by(3.17)and the continuity of the embeddingV ⊂ L6(Ω) we have

I2 ≤ σ1‖χ̄‖2(c + ‖χ1‖4
L∞(0,T ;V) + ‖χ2‖4

L∞(0,T ;V)) ≤ c1σ1|∇χ|2, (4.14)
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furthermore,∫ t

0
(I1(s)+ I3(s))ds ≤ cσ1|m0|2. (4.15)

Indeed, we used that, settingq = max{p,2p−4}, it is q ≤ 10 by (A9), so that the inequality above is a consequence
of (4.12). Of course, the constantcσ1 in (4.15)depends on theL10-norms ofχ1 andχ2, in addition.

As for theγ-term, by(4.10), (4.11) and (4.1)it is

−
∫
Ω

(γ(χ1)− γ(χ2))χ̄ ≤ L|χ|H |χ̄|H ≤ cσ2|χ̄|2∗ + σ2|∇χ|2 + c‖χ0,1 − χ0,2‖2
∗. (4.16)

Next,

−
∫
Ω

bχ̄

(
1

ϑ1
− 1

ϑ2

)
= −

∫
Ω

bχ

(
1

ϑ1
− 1

ϑ2

)
+ bm0

∫
Ω

(
1

ϑ1
− 1

ϑ2

)
. (4.17)

Furthermore, by (A1),

bm0

∫
Ω

(
1

ϑ1
− 1

ϑ2

)
= − b

c0
m0

∫
Ω

(α(ϑ1)− α(ϑ2)− 2(ϑ1)+ 2(ϑ2)) ≤ σ3|ϑ|2 + cσ3|m0|2

− b

c0
m0

∫
Ω

(α(ϑ1)− α(ϑ2)). (4.18)

Now, let us sum together(4.3)andc0 times(4.9)and integrate in time between 0 andt ≤ T . Repeating(4.4)and
recalling(4.17), we see that two terms cancel. Moreover,c0 times the last term on the right-hand side of(4.18),
after integration, is controlled by

−bm0

∫ t

0

∫
Ω

(α(ϑ1)− α(ϑ2)) ≤ cσ4|m0|2 + σ4|1 ∗ (α(ϑ1)− α(ϑ2))|2. (4.19)

Then, taking the variousσi sufficiently small (in particular we need thatc1σ1 ≤ 1/2), we finally deduce

‖1 ∗ (α(ϑ1)− α(ϑ2))(t)‖2 +
∫ t

0
|ϑ|2 + ‖χ̄(t)‖2

∗ +
∫ t

0
|∇χ|2 ≤ c‖(ϑ0,1 − ϑ0,2)+ b(χ0,1 − χ0,2)‖2

∗

+ c

∫ t

0
‖χ̄‖2

∗ + c‖χ0,1 − χ0,2‖2
∗ + c|m0|2, (4.20)

whence, recalling(4.7), a further application of Gronwall’s lemma readily yields(3.26). �

Proof of Theorem 3.7. We operate as before onequation (3.18)and get(4.3). Next, with the same notation as
above, we test again(3.19)byNχ̄, (3.20)by χ̄, and take the difference, getting(4.9). Instead of repeating(4.13),
now the terms withβ are simply treated as follows:

−
∫
Ω

(ξ1 − ξ2)χ̄ ≤ |m0|
∫
Ω

(|ξ1| + |ξ2|). (4.21)

Repeating the rest of the procedure as in the previous case, instead of(4.20)we obtain

‖1 ∗ (α(ϑ1)− α(ϑ2))(t)‖2 +
∫ t

0
|ϑ|2 + ‖χ̄(t)‖2

∗ +
∫ t

0
|∇χ|2 ≤ c‖(ϑ0,1 − ϑ0,2)+ b(χ0,1 − χ0,2)‖2

∗

+ c

∫ t

0
‖χ̄‖2

∗ + c‖χ0,1 − χ0,2‖2
∗ + c|m0|2 + c|m0|(‖ξ1‖L1(QT )

+ ‖ξ2‖L1(QT )
), (4.22)

whence(3.27)is once more a straightforward consequence of(4.7)and Gronwall’s lemma. �



294 E. Rocca, G. Schimperna / Physica D 192 (2004) 279–307

Proof of Lemma 3.9. We start by recalling, together with its proof, a simple preliminary result from convex analysis.

Lemma 4.1. Let T > 0, let J : H → (−∞,+∞] be a convex, l.s.c., and proper functional, and let u ∈
H1(0, T ;V ′) ∩ L2(0, T ;V), η ∈ L2(0, T ;V), A = ∂J. Let alsoη(t) ∈ Au(t) for a.e.t ∈ (0, T). Moreover, let us
suppose that there existk1, k2 > 0 such that

J(v) ≥ k1|v|2 − k2 for all v ∈ H. (4.23)

Then, the functiont !→ J(u(t)) is absolutely continuous in[0, T ] and∫ t

s

〈∂tu(r), η(r)〉dr = J(u(t))− J(u(s)) ∀s, t ∈ [0, T ]. (4.24)

Proof. To prove the above lemma, let us extend the functionalJ to the spaceV ′ by setting, forv ∈ V ′,

J∗ : V ′ → (−∞,+∞], J∗(v) :=
{
J(v) if v ∈ H,

+∞ otherwise.
(4.25)

It is easy to see that, thanks to(4.23), the functionalJ∗ is still convex, lower semicontinuous, and proper onV ′. Let
us now note by Id the identity operator onV and observe that Id+ B : V → V ′ is the Riesz mapping associated to
the standard scalar product ofV . Then, by assumption we have

(z− u, η) ≤ J(z)− J(u) a.e. in (0, T) (4.26)

for everyz ∈ H . Thus, sinceη ∈ V a.e. in(0, T), we immediately deduce that

((z− u, η+ Bη))∗ ≤ J∗(z)− J∗(u) a.e. in (0, T) (4.27)

for anyz ∈ V ′. Indeed,J∗ is identically+∞ in V ′ \ H . Sinceη + Bη ∈ L2(0, T ;V ′), the above relation can be
restated by saying that

η+ Bη ∈ A∗(u) a.e. in (0, T), (4.28)

whereA∗ denotes the subdifferential ofJ∗ with respect to the scalar product ofV ′. Then, the assumptions of[5,
Lemma 3.3, p. 73]are fulfilled in the spaceV ′. By that result,J∗(u) = J(u) ∈ AC([0, T ]) and formula(4.24)
holds, so concluding the proof ofLemma 4.1. �

Let us refer to the (more difficult) conserved case (cf.Theorem 3.4). We aim to applyLemma 4.1to the functional

J = GH : H → [0,+∞], GH(v) :=
∫
Ω

[‖v‖2

2
+ β̂(v)

]
. (4.29)

Actually, if we setϕ := γ(χ)+ b/θ, then, observing thatϕ ∈ L2(0, T ;V ′) by (3.8), (3.17), and (A3), and recalling
relation(2.4), it is not difficult to show thatχ, ξ, ϕ satisfy

η := −Nχt + ξΩ + ϕΩ − ϕ + χ ∈ ∂GH(χ) a.e. in (0, T), (4.30)

which allows to applyLemma 4.1with obvious choices of the other data. This gives the second of(3.36)and formula
(3.37). It remains to show the continuity property ofχ in (3.36). Indeed, asGH is the sum of two convex functionals
(cf. (4.29)), we deduce that both summands are continuous, so that this holds in particular for the mapt !→ ‖χ(t)‖2.
Finally, recalling thatχ ∈ Cw(0, T ;V) by (3.17)and, e.g.,[26, Lemma 3.3, p. 72], this is indeed enough to have
also the first of(3.36), so that the proof of Lemma 3.9 is now complete.
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Proof of Theorem 3.11. We start dealing with the nonconserved case. First of all, let us show that, as(ϑ0, χ0) ∈ X,
it follows that the corresponding solution(ϑ(t), χ(t)) = S(t)(ϑ0, χ0) belongs toX for everyt > 0.

With this aim, let us define

α̂(r) :=
∫ r

1
α(s)ds for r ∈ (0,+∞) (4.31)

and observe that, by(3.1)–(3.3), there exist a constantν > 0 and aconvex and non-negativefunction α̂rest :
(0,+∞) → R such that

α̂(r) = ν log− r + νr2 + α̂rest(r) ∀r ∈ (0,+∞). (4.32)

Then, using the fact thatϑ > 0 a.e. inQT (cf. (3.7)) together withLemma 4.1(applied with the choices ofu = ϑ,
η = α(ϑ), andJ given by the convex functional induced onH by α̂), we obtain that the function

t !→
∫
Ω

α̂(ϑ(t)) (4.33)

is absolutely continuous in [0, T ]. By the decomposition(4.32), it then follows that log− ϑ(t) ∈ L1(Ω) for every
t > 0. Sinceβ̂(χ(t)) ∈ L1(Ω) for everyt > 0 by Lemma 3.9, this concludes the proof thatS(t) mapsX into itself
∀t > 0.

Next, let us prove the continuity of the mapS(t) : X → X for any t > 0. This will show thatS(·) is a strongly
continuous semigroup onX, as desired. Assume that{(ϑ0,n, χ0,n)} ⊂ X is a sequence of initial data converging to
(ϑ0, χ0) ∈ X in the metric ofX. Moreover, let us fixt > 0 and name(ϑn, χn) (resp.,(ϑ, χ)) the solution emanating
from (ϑ0,n, χ0,n) (resp.,(ϑ0, χ0)), whose existence and uniqueness are guaranteed byTheorems 3.2 and 3.5. Then,
let us notice that we are in the position of applyingTheorem 3.5with the choices of(ϑ0,1, χ0,1) = (ϑ0,n, χ0,n) and
(ϑ0,2, χ0,2) = (ϑ0, χ0). Thus, by(3.24)we deduce that

(ϑn, χn) → (ϑ, χ) strongly inL∞(0, T ;V ′)× L∞(0, T ;H) (4.34)

(and, in particular, the limit of thewholesequence is identified).
However, this is not sufficient to prove the convergence of(ϑn(t), χn(t)) to (ϑ(t), χ(t)) in the (stronger) metric of
X. Thus, to proceed, we have to repeat the energy estimates (cf.[7, Lemmas 4.1 and 4.2]) on the sequence(ϑn, χn).
In this way, we get uniform bounds, independent ofn, of the norms appearing in(3.7)–(3.10). By the standard
compactness arguments, we also have as a byproduct the corresponding weak or weak–∗ convergence properties,
holding for the whole sequence thanks to(4.34). In particular, by standard continuous embedding results, we have that

ϑn(t) → ϑ(t) weakly inH, χn(t) → χ(t) weakly inV (4.35)

for all t > 0. We also note that (see[9, Section 5]for the details in an even more general setting), additionally, this
procedure yields

α(ϑn) → α(ϑ) weakly inL2(0, T ;V), (4.36)

again for the whole sequenceα(ϑn). Moreover, a strongL2(QT )-convergenceγ(χn) → γ(χ) can be standardly
proved.

To conclude, we use a semicontinuity argument in order to show the convergence with respect todX. Writing
(3.11)at the stepn, testing it byα(ϑn), and integrating over [0, t], thanks to the integration by parts formula(4.24)
we deduce∫

Ω

α̂(ϑn(t)) ≤
∫
Ω

α̂(ϑ0,n)−
∫ t

0
‖α(ϑn)‖2

J +
∫ t

0
〈f, α(ϑn)〉 − b

∫ t

0

∫
Ω

∂tχnα(ϑn), (4.37)

which holds foreverytime t > 0.
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Next, testing(3.12)at the stepn by ∂tχn, integrating over [0, t], and using(3.37), for everyt > 0 we get

1

2
|∇χn(t)|2 +

∫
Ω

β̂(χn(t)) ≤ 1

2
|∇χ0,n|2 +

∫
Ω

β̂(χ0,n)−
∫ t

0
|∂tχn|2H −

∫ t

0

∫
Ω

γ(χn)∂tχn −
∫ t

0

∫
Ω

b

ϑn
∂tχn.

(4.38)

Let us sum(4.37)andc0 times(4.38)and note that two terms cancel. Then, let us take the lim sup, asn ↗ ∞, of
the resulting relation. Of course, our aim is letting the terms on the right-hand sides of(4.37) and (4.38)pass to the
limit.

First, let us observe that the three terms related to the initial values pass to the limit since the initial data are
assumed to converge indX (cf. (3.32)). Next, using the energy estimates, the standard compact embedding theorems,
and (A1), (A3) and(3.6), we easily derive that

lim
n→∞

∫ t

0

[
〈f, α(ϑn)〉 − c0

∫
Ω

γ(χn)∂tχn − b

∫
Ω

∂tχn2(ϑn)

]

=
∫ t

0

[
〈f, α(ϑ)〉 − c0

∫
Ω

γ(χ)∂tχ− b

∫
Ω

∂tχ2(ϑ)

]
. (4.39)

Furthermore, by semicontinuity of norms with respect to weak convergence,

lim sup
n→∞

∫ t

0
[−‖α(ϑn)‖2

J − c0|∂tχn|2H ] ≤
∫ t

0

[
−‖α(ϑ)‖2

J − c0|∂tχ|2H
]
. (4.40)

Then, testing the limit relation(3.11)by α(ϑ) and the limit(3.12)by c0∂tχ, summing, and integrating over [0, t], a
comparison with the result of the preceding computations yields, for everyt > 0,

lim sup
n→∞

∫
Ω

[
α̂(ϑn(t))+ c0

2
|∇χn(t)|2 + c0β̂(χn(t))

]
≤
∫
Ω

[
α̂(ϑ(t))+ c0

2
|∇χ(t)|2 + c0β̂(χ(t))

]
. (4.41)

Moreover, we remark that the converse lim inf-inequality holds by weak convergence ofϑn, χn and convexity and
lower semicontinuity of̂α, β̂, and of the squared modulus. This gives,∀t > 0,∫

Ω

α̂(ϑn(t)),
1

2
|∇χn(t)|2H,

∫
Ω

β̂(χn(t)) →
∫
Ω

α̂(ϑ(t)),
1

2
|∇χ(t)|2H,

∫
Ω

β̂(χ(t)), (4.42)

respectively (and not only the convergence of the sum). Then, using the decomposition in(4.32)(and in particular
the convexity ofα̂rest), we also get

|ϑn(t)|2H,
∫
Ω

log−(ϑn(t)) → |ϑ(t)|2H,
∫
Ω

log−(ϑ(t)), (4.43)

still ∀t > 0.
At this point, using(4.42), (4.43) and (4.35), we obtain that

ϑn(t) → ϑ(t) strongly inH, χn(t) → χ(t) strongly inV, (4.44)

but not yet the convergence indX. Actually, it remains to show that

log−(ϑn(t)), β̂(χn(t)) → log−(ϑ(t)), β̂(χ(t)) (4.45)

strongly inL1(Ω). Both terms are treated with the aid of a simple lemma.
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Lemma 4.2. Let{un} be a sequence of non-negative functions inL1(Ω) converging almost everywhere to a function
u ∈ L1(Ω). Moreover, let∫

Ω

un →
∫
Ω

u asn ↗ ∞. (4.46)

Then, un → u strongly inL1(Ω).

Proof. Letvn := un−u, which tends to 0 a.e. inΩ. Moreover,
∫
Ω
vn → 0 by assumption. Since−u ≤ −v−n ≤ 0 a.e.

in Ω andu ∈ L1(Ω), we can apply Lebesgue’s theorem tov−n and conclude that
∫
Ω
v−n → 0. Thus, by comparison,∫

Ω
v+n → 0 and

∫
Ω
|vn| → 0, i.e. the assert. �

To apply the lemma, anyway, we need the a.e.-Ω convergence of the whole sequence{ϑn(t)} to ϑ(t), but we just
know (by(4.44)) that this holds up to the extraction of a subsequence{ϑnk }. Thus, as a first step, we only obtain that

log−(ϑnk (t)) → log−(ϑ(t)) strongly inL1(Ω). (4.47)

However, since(4.44)holds for the whole sequences, then the same is true for(4.47). The same argument works also
for the termβ̂(χn(t)), with some small additional complication due to the fact thatβ̂ is not necessarily continuous on
the border of its domain (cf. the discussion leading to(3.34)in the proof ofLemma 3.8to overcome this difficulty).
This concludes the proof ofTheorem 3.11in the nonconserved case.

The proof in the conserved case is analogous. The main differences are the following: first, when repeating(4.38),
we now have to test(3.19)byN∂tχn, (3.20)by ∂tχn, and take the difference. This gives‖∂tχn‖∗ whenever we have
had|∂tχn| before.

Consequently, some further care is required also as we perform the semicontinuity argument. Indeed, the energy
estimates now just yield

χn → χ weakly inH1(0, T ;V ′) ∩ L2(0, T ;W) (4.48)

and by Aubin’s lemma this still gives

χn → χ strongly inL2(0, T ;V). (4.49)

However, it is not obvious how to treat the latter two terms in(4.39). As for the first, denoting bŷγ a primitive of
γ, we have∫ 0

t

〈∂tχn, γ(χn)〉 =
∫
Ω

γ̂(χn(t))−
∫
Ω

γ̂(χ0,n) →
∫
Ω

γ̂(χ(t))−
∫
Ω

γ̂(χ0) =
∫ 0

t

〈∂tχ, γ(χ)〉, (4.50)

where the chain rule used in the integrations in time is just formal in this setting, but could be made rigorous through
an approximation procedure; moreover, the convergence holds since from(4.48), interpolation, and (A3), we know
that

γ̂(χn) → γ̂(χ) strongly inC0([0, T ];H). (4.51)

Finally, let us integrate by parts in time the latter term in(4.39). Thanks to (A10), we have

−b
∫ t

0

∫
Ω

∂tχn2(ϑn)= bc∞
∫ 0

t

〈∂tϑn, χn〉 − bc∞
∫
Ω

χn(t)ϑn(t)+ bc∞
∫
Ω

χ0,nϑ0,n → bc∞
∫ 0

t

〈∂tϑ, χ〉

−bc∞
∫
Ω

χ(t)ϑ(t)+ bc∞
∫
Ω

χ0ϑ0 = b

∫ t

0

∫
Ω

∂tχ2(ϑ), (4.52)
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where we have used(4.49)and thatϑn → ϑ weakly inH1(0, T ;V ′), which follows from(3.7). Then, the rest of
the proof works exactly as in the nonconserved case. �

5. Dissipativity

Proof of Theorem 3.13. The proof is reached via a number of a priori estimates. Let us detail them.

Estimate 1. Test(3.11)by −1/ϑ, (3.12)by χt and take the sum. Using(3.3) and noting that two terms cancel
together, the procedure gives

d

dt

∫
Ω

−logϑ + c′0
∫
Ω

∣∣∣∣∇ 1

ϑ

∣∣∣∣
2

+ c0n0

∫
Γ

1

ϑ2
+ |χt|2H + d

dt

∫
Ω

[ |∇χ|2
2

+ β̂(χ)

]

≤ n0

∫
Γ

2(ϑ)

ϑ
−
〈
f,

1

ϑ

〉
−
∫
Ω

γ(χ)+ χt. (5.1)

Next, let us treat the three terms on the right-hand side: first, by (A1),(4.1), and continuity of the trace operator
from V toL2(Γ)

n0

∫
Γ

2(ϑ)

ϑ
≤ σ5

∥∥∥∥ 1

ϑ

∥∥∥∥
2

+ cσ5, (5.2)

next,

−
〈
f,

1

ϑ

〉
≤ σ6

∥∥∥∥ 1

ϑ

∥∥∥∥
2

+ cσ6‖f‖2
∗, (5.3)

finally,

−
∫
Ω

γ(χ)χt ≤ σ7|χt|2H + σ7‖χ‖4
L4(Ω)

+ cσ7. (5.4)

Putting the above computations together and choosingσ5, σ6, σ7 sufficiently small, we readily have

d

dt

∫
Ω

[
−logϑ + |∇χ|2

2
+ β̂(χ)

]
+ c3

[∥∥∥∥ 1

ϑ

∥∥∥∥
2

+ |χt|2H
]
≤ σ7‖χ‖4

L4(Ω)
+ cσ5,σ6,σ7, (5.5)

where the constantc3 > 0 also depends onσ5, σ6, and the constantcσ5,σ6,σ7 also depends onc0, c
′
0, n0, f , L, of

course.

Estimate 2. Test now(3.12)by χ, getting

d

dt

∫
Ω

χ2

2
+
∫
Ω

|∇χ|2 +
∫
Ω

ξχ ≤ −
∫
Ω

γ(χ)χ−
∫
Ω

bχ

ϑ
. (5.6)

By (A3), the right-hand side is simply treated this way:

−
∫
Ω

γ(χ)χ−
∫
Ω

bχ

ϑ
≤ σ8‖χ‖4

L4(Ω)
+ σ8

∣∣∣∣ 1ϑ
∣∣∣∣
2

H

+ cσ8. (5.7)
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Estimate 3. Finally, test(3.11)by ϑ. By (3.2), this gives

d

dt

∫
Ω

ϑ2

2
+ c∞

∫
Ω

|∇ϑ|2 + n0

∫
Γ

α(ϑ)ϑ ≤ 〈f, ϑ〉 −
∫
Ω

bχtϑ. (5.8)

Let us now note that, by (A1),

α(ϑ)ϑ = (α(ϑ)− α(1))(ϑ − 1)+ α(ϑ) ≥ c∞(ϑ − 1)2 + α(ϑ) ≥ 1
2c∞ϑ2 − c∞ + α(ϑ). (5.9)

Furthermore, it is clear that

|α(ϑ)| =
∣∣∣−c0

ϑ
+ 2(ϑ)

∣∣∣ ≤ σ9ϑ
2 + σ9

1

ϑ2
+ cσ9. (5.10)

Next, also on account of(3.6), we have

〈f, ϑ〉 −
∫
Ω

bχtϑ ≤ σ10‖ϑ‖2 + cσ10‖χt‖2
∗ + cσ10‖f‖2

∗. (5.11)

Thus, takingσ9, σ10 sufficiently small (a good choice forσ10 is c∞/8), (5.8)becomes

d

dt

∫
Ω

ϑ2

2
+ c4‖ϑ‖2 ≤ cσ10‖χt‖2

∗ + σ9

∫
Ω

1

ϑ2
+ cσ9,σ10, (5.12)

where the constantc4 > 0 on the left-hand side also depends onσ9, σ10, c∞, n0, while the constantcσ9,σ10 on the
right-hand side also depends onc0, c∞, L, and on theV ′-norm off , of course.

Conclusion of the proof. Let us now note that, by (A11) (cf. also(3.39)), there exist constantsκ5, κ6 > 0 such that

ξχ ≥ κ5[β̂(χ)+ χ4 + χ2] − κ6 a.e. inΩ. (5.13)

Thus, let us sum together(5.5), (5.6) and (5.12)multiplied by a constantε > 0 to be chosen later. Using(5.7),
(5.13), and the continuity of the embeddingH ⊂ V ′, this procedure gives

d

dt

[
−
∫
Ω

logϑ + ε

2
|ϑ|2H + 1

2
‖χ‖2 +

∫
Ω

β̂(χ)

]
+ c3

[∥∥∥∥ 1

ϑ

∥∥∥∥
2

+ |χt|2H
]
+ κ5

[∫
Ω

β̂(χ)+ ‖χ‖4
L4(Ω)

+ |χ|2H
]

+ |∇χ|2H + εc4‖ϑ‖2 ≤ (σ8 + εσ9)

∣∣∣∣ 1ϑ
∣∣∣∣
2

+ (σ7 + σ8)‖χ‖4
L4(Ω)

+ εcσ10|χt|2H + c5, (5.14)

where the constantc5 collects all the constants introduced on the right-hand sides of the computations above and
depends on the variousσi’s.

Then, choosing

σ7 + σ8 ≤ 1

κ5
, σ8 + εσ9 ≤ 1

c3
, ε ≤ min

{
c3

2cσ10

,1

}
, (5.15)

all the terms on the right-hand side are controlled by the corresponding terms on the left-hand side. Furthermore, it
is clear that there existsc6 > 0, also depending onε, such that

εc4

2
‖ϑ‖2 + c3

4

∥∥∥∥ 1

ϑ

∥∥∥∥
2

≥ c6

[
−
∫
Ω

logϑ + ε

2
|ϑ|2H

]
. (5.16)

Next, let us observe that

−logr + ε1
2(r

2) ≥ log− r + 1
4εr

2 − cε ∀r ∈ (0,+∞) (5.17)
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and for some constantcε > 0 not depending onr. We can now define

Φε(ϑ, χ) := −
∫
Ω

logϑ + ε

2
|ϑ|2H + 1

2
‖χ‖2 +

∫
Ω

β̂(χ)+ cε (5.18)

and note that, by(5.17), Φε is a non-negative functional. More precisely, we have that

Φε(ϑ, χ) ≥
∫
Ω

log− ϑ + ε

4
|ϑ|2H + 1

2
‖χ‖2 +

∫
Ω

β̂(χ). (5.19)

Now, also by(5.16), (5.14)yields, for somec7, c8, c9 > 0 depending onε and on the other constants,

d

dt
Φε(ϑ, χ)+ c7Φε(ϑ, χ)+ c8

[
‖χ‖4

L4(Ω)
+
∥∥∥∥ 1

ϑ

∥∥∥∥
2

+ ‖ϑ‖2 + |χt|2H
]
≤ c9. (5.20)

Thus, using Gronwall’s lemma in the differential form (cf., e.g.,[10, Lemma 2.5]), we obtain that for everyt > 0
it holds

Φε(ϑ(t), χ(t)) ≤ Φε(ϑ0, χ0)exp(−c7t)+ c9

c7
. (5.21)

Let us finally show that this estimate entails the existence of a setB0, bounded in the metricdX, whichabsorbsall
metric bounded setM in a finite timeTM (cf. (2.15)). As a first step, we note that a setM of X is bounded with
respect todX if and only if

∃RM > 0 : dX((u, v), (1,0)) ≤ RM ∀(u, v) ∈M. (5.22)

Thus, we can define our candidate setB0 as

B0 := {(u, v) ∈ X : dX((u, v), (1,0)) ≤ RB0}, (5.23)

where the radiusRB0 is introduced by

RB0 := 16c9

εc7
+ 2|Ω| + 1+ 4

ε
. (5.24)

The absorbing character ofB0 is provided by the following couple of lemmas.

Lemma 5.1. The set

B̃0 :=
{
(u, v) ∈ X : Φε(u, v) ≤ 2c9

c7

}

is contained intoB0.

Proof. Let (u, v) ∈ B̃0. Then, sinceε ≤ 1 (cf. (5.15)) and by(5.17),

2c9

c7
≥Φε(u, v) =

∫
Ω

−logu+ ε

2
|u|2H + 1

2
‖v‖2 +

∫
Ω

β̂(v)+ cε

≥
∫
Ω

log− u+ ε

4
|u|2H + 1

2
‖v‖2 +

∫
Ω

β̂(v)

≥
∫
Ω

log− u+ ε

8
|u− 1|2H − ε

4
|Ω| + 1

2
‖v‖2 +

∫
Ω

β̂(v)

≥
∫
Ω

log− u+ ε

8
|u− 1|H − ε

8
− ε

4
|Ω| + 1

2
‖v‖ − 1

2
+
∫
Ω

β̂(v)

≥ ε

8
dX((u, v), (1,0))− ε

4
|Ω| − ε

8
− 1

2
. � (5.25)
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Lemma 5.2. LetM be metric bounded inX, i.e. let it satisfy(5.22)for someRM > 0. Then, there exists̃RM > 0
depending only onRM, ε, cε, andΩ, and such that

Φε(u, v) ≤ R̃M ∀(u, v) ∈M. (5.26)

Proof. By (5.18) and (5.15), for all (u, v) ∈M we have

Φε(u, v) = −
∫
Ω

logu+ ε

2
|u|2H + 1

2
‖v‖2 +

∫
Ω

β̂(v)+ cε ≤
∫
Ω

|log− u− log−1| + ε|u− 1|2H + ε|Ω|

+ 1

2
‖v‖2 +

∫
Ω

β̂(v)+ cε ≤ dX((u, v), (1,0))+ 3

2
dX((u, v), (1,0))2 + ε|Ω| + cε. (5.27)

Thus, the assert follows with the choice of:

R̃M := RM + 3
2R

2
M + ε|Ω| + cε. (5.28)

�

It is now clear that, asM satisfies(5.22), it follows from Lemma 5.2and(5.21)that:

∀t ≥ TM := 1

c7
log

R̃Mc7

c9
, Φε(S(t)(u, v)) ≤ 2c9

c7
∀(u, v) ∈M. (5.29)

The thesis ofTheorem 3.13is now a straightforward consequence of(5.23)andLemma 5.1. �

Corollary 5.3. There exists a(monotone increasing) functionϕ : R
+ → R

+ such that, if M is dX-bounded inX
(i.e. it fulfills (5.22)), then

‖χ‖4
T4(L4(Ω))

+
∥∥∥∥ 1

ϑ

∥∥∥∥
2

T2(V)

+ ‖ϑ‖2
T2(V)

+ ‖χt‖2
T2(H)

≤ ϕ(RM) (5.30)

for all (ϑ, χ) = S(t)(ϑ0, χ0) and for all (ϑ0, χ0) ∈M.

Proof. Take anyt > 0 and integrate(5.20)in time betweent andt + 1. Then, to controlΦ(ϑ(t), χ(t)), useLemma
5.2 and relation(5.21). Finally, pass to the sup ast varies inR

+ and recall the definition(2.9) of the norms ofT
type. �

Proof of Theorem 3.14. The outline of the procedure is similar to the nonconserved case. Hence, let us just sketch
the differences. In the sequel,c� will denote any positive constant additionally depending on�.

In Estimate 1, instead of testing(3.12)byχt , we have to test(3.19)byNχt , (3.20)byχt , and take the difference.
Then, we can proceed as before, by substituting anyH-norm ofχt with theV ′ one. However, we have to modify
(5.4)as (cf.(4.50)) getting

−〈χt, γ(χ)〉 = − d

dt

∫
Ω

γ̂(χ(t)). (5.31)

Then,(5.5) takes now the form

d

dt

∫
Ω

[
−logϑ + |∇χ|2

2
+ β̂(χ)+ γ̂(χ)

]
+ c3

[∥∥∥∥ 1

ϑ

∥∥∥∥
2

+ ‖χt‖2
∗

]
≤ c, (5.32)

where of course—and the same for the sequel—the various constants need not assume the same values as before.
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In the passage corresponding to Estimate 2, we setχ̄ := χ− χΩ and test(3.19)byNχ̄, (3.20)by χ̄, and take the
difference. Integrating in time, we have

d

dt

‖χ̄‖2∗
2

+ |∇χ|2H +
∫
Ω

ξχ ≤
∫
Ω

ξχΩ −
∫
Ω

γ(χ)χ̄−
∫
Ω

bχ̄

ϑ
(5.33)

and we have to give a bound for the right-hand side. First of all, it is easy to see that, for some (new)σ8 > 0,

−
∫
Ω

γ(χ)χ̄−
∫
Ω

bχ̄

ϑ
≤ c�,σ8(1+ |χ̄|2H)+ σ8

∣∣∣∣ 1ϑ
∣∣∣∣
2

H

.

To deal with the first term on the right-hand side of(5.33), let us first assume thatD(β) = R. Then, it is easy to see
that ∫

Ω

ξχΩ ≤ c�

∫
Ω

|ξ| ≤ c� + 1

2

∫
Ω

ξχ. (5.34)

On the other hand, ifD(β) is bounded (we do not deal, just in order to avoid technicalities, with the case whenD(β)

is a half line), then inequality(5.34)does no longer hold and we need two further estimates, provided by a suitable
modification of an argument devised by Kenmochi et al. in[15] and also described, e.g., in[6, Section 4]. Firstly,
we have to test(3.19)byN(ξ − ξΩ), (3.20)by ξ − ξΩ, and take the difference. Using the monotonicity ofβ, (A3),
and(2.4), it is not difficult to infer

|ξ − ξΩ|2H ≤ c�

(
1+ |χ̄|2 +

∣∣∣∣ 1ϑ
∣∣∣∣
2

+ ‖χt‖2
∗

)
. (5.35)

Then, let us choosem1,m2 ∈ intD(β) (depending on�), with m1 < η1, m2 > η2 (cf. (3.31)), and setδ = δ(�) :=
min{η1 −m1,m2 − η2}. SinceχΩ ∈ [η1, η2], we can proceed as in[6, third estimate]and get

δ

∫
Ω

|ξ| ≤ c� +
∫
Ω

(ξ − ξΩ)(χ− χΩ). (5.36)

SinceD(β) is bounded andχ satisfies(3.21), we deduce that∫
Ω

|ξ| ≤ c�

(
1+

∫
Ω

|ξ − ξΩ|
)
. (5.37)

Consequently, thanks to(5.35), it follows that:

|ξ|2H ≤ 2(|ξ − ξΩ|2H + |ξΩ|2H) ≤ c

[
|ξ − ξΩ|2H + c�

(
1+

∫
Ω

|ξ − ξΩ|
)2
]

≤ c�[1 + |ξ − ξΩ|2H ] ≤ c�

[
1+ |χ̄|2 +

∣∣∣∣ 1ϑ
∣∣∣∣
2

+ ‖χt‖2
∗

]
. (5.38)

Finally, Estimate 3 is repeated exactly as before and we get again(5.12). Thus, we can put all the computations
above together, starting from the case whenD(β) is not bounded. Then, from(5.32)–(5.34) and (5.12), using again
(5.13), and takingε as before, it follows that:
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d

dt

[
−
∫
Ω

logϑ + ε

2
|ϑ|2H + 1

2
‖χ̄‖2 +

∫
Ω

β̂(χ)+
∫
Ω

γ̂(χ)

]

+ c3

[∥∥∥∥ 1

ϑ

∥∥∥∥
2

+ ‖χt‖2
∗

]
+ κ5

2

[∫
Ω

β̂(χ)+ ‖χ‖4
L4(Ω)

+ |χ|2H
]
+ |∇χ|2H + εc4‖ϑ‖2

≤ c� + c�,σ8|χ̄|2H + (σ8 + εσ9)

∣∣∣∣ 1ϑ
∣∣∣∣
2

H

+ εcσ10‖χt‖2
∗, (5.39)

where we used the (equivalent) norm onV given by‖ · ‖2 = |∇ · |2 + ‖ · ‖2∗. Then, taking againεcσ10 ≤ c3/2 and
σ8, σ9 sufficiently small, and noting that

c�,σ8|χ̄|2H ≤ c�,σ8 + 1
4κ6‖χ‖4

L4(Ω)
, (5.40)

we see that all the terms on the right-hand side are controlled. Moreover, we observe that, by (A3) and (A11), there
existsc > 0 such that

β̂(r)+ γ̂(r) ≥ 1
2β̂(χ)− c ∀r ∈ D(β̂). (5.41)

This yields that, for a (new) choice ofcε > 0, the (new) functional

Φε(ϑ, χ) := −
∫
Ω

logϑ + ε

2
|ϑ|2H + 1

2
‖χ̄‖2 +

∫
Ω

β̂(χ)+
∫
Ω

γ̂(χ)+ cε (5.42)

is non-negative. More precisely, we choosecε so that

Φε(ϑ, χ) ≥
∫
Ω

log− ϑ + ε

4
|ϑ|2H + 1

2
‖χ̄‖2 + 1

2

∫
Ω

β̂(χ). (5.43)

Now, the proof of the existence of adX-bounded absorbing setB0,� can be completed as in the nonconserved case
(of course, the values of some constants will be different and they will depend, in addition, on�). This concludes
the case of unboundedD(β).

If D(β) is bounded, instead, we have to come back to(5.33)and note that, by monotonicity ofβ,

ξχ̄ = (ξ − β0(χΩ))χ̄+ β0(χΩ)χ̄ ≥ β0(χΩ)χ̄ (5.44)

and, of course,∫
Ω

|β0(χΩ)χ̄| ≤ c�‖χ̄‖L1(Ω).

Thus the terms withξ in (5.33)are controlled but do no longer provide a contribution in the estimate. Thus, as we
write the relation corresponding to(5.39), we now also have to add the contribution of(5.38)times a (small)µ > 0.
We obtain (for a newc3 > 0)

d

dt

[
−
∫
Ω

logϑ + ε

2
|ϑ|2H + 1

2
‖χ̄‖2 +

∫
Ω

β̂(χ)+
∫
Ω

γ̂(χ)

]
+ c3

[∥∥∥∥ 1

ϑ

∥∥∥∥
2

+ ‖χt‖2
∗

]

+µ|ξ|2H + |∇χ|2H + εc4‖ϑ‖2 ≤ c� + (c�,σ8 + c1
�)|χ̄|2H + c�‖χ̄‖L1(Ω) + (σ8 + εσ9 + µc1

�)

∣∣∣∣ 1ϑ
∣∣∣∣
2

H

+(εcσ10 + µc1
�)‖χt‖2

∗, (5.45)
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wherec1
� is precisely the constantc� appearing in(5.38). Now, the termβ̂(χ) appears on the left-hand side just

under time derivative. However, working similarly as in the last part of the proof ofProposition 3.15and using
(A11), it is easy to see that∫

Ω

ξ2 ≥ c

(∫
Ω

β̂(χ)+ ‖χ‖4
L4(Ω)

+ |χ|2H
)
,

so that we can conclude the estimate by choosingε andµ sufficiently small. The rest of the procedure is now as in
the previous case. This concludes the proof of Lemma 3.14. �

Again, we also have an additional property, whose proof is analogous as before.

Corollary 5.4. There exists a(monotone increasing) functionϕ� : R
+ → R

+ such that, ifM� is dX-bounded in
X� (i.e. it fulfills (5.22)), then

‖χ‖4
T4(L4(Ω))

+
∥∥∥∥ 1

ϑ

∥∥∥∥
2

T2(V)

+ ‖ϑ‖2
T2(V)

+ ‖χt‖2
T2(V ′) ≤ ϕ�(RM�) (5.46)

for all (ϑ, χ) = S(t)(ϑ0, χ0) and for all (ϑ0, χ0) ∈M�.

6. Existence of the attractor

Proof of Theorem 3.16. Let us now perform some further estimates on the solution of system(3.11)–(3.14). We
notice that some of the passages below might be formal in the present framework; indeed, we shall work in a
regularity setting which is stronger with respect to the properties(3.7)–(3.10). However, the estimates might be
made rigorous by effecting a regularization and then passing to the limit; one possibility could be to regularize
(3.11)–(3.13)and replace it, e.g., with

ι∂tα(ϑ)+ ∂t(ϑ + bχ)+ J(α(ϑ)) = f inV ′ a.e. in (0, T), (6.1)

∂tχ+ Bχ+ βι(χ)+ γ(χ) = − b

ϑ
a.e. inQT , (6.2)

whereβι is the Yosida approximation ofβ and the regularization parameterι > 0 is intended to go to the limit.
It is easy to show that the solutions of such a regularized system gain (a priori just ast > 0—which is enough,
indeed—unless the initial data are regularized too) all the regularity which is required to make the estimates rigorous.
However, since this procedure is rather standard, we omit the details and go on in a formal way.

Our task is showing thatS(t) admits an absorbing set which is bounded with respect to the metric ofV and, more
precisely, fulfills the conditions in the statement ofProposition 3.15. With this aim, we first redefine the absorbing
setB0 provided byTheorem 3.13by setting

C0 :=
⋃
t≥0

S(t)B0. (6.3)

It is a standard matter to show thatC0 is still an absorbing set forS(t), which is bounded indX by an absolute
constantRC0 (cf. (5.24)). Furthermore, by constructionC0 is positively invariant, i.e.S(t)C0 ⊂ C0 for all t ≥ 0.

First step. Let us assign an initial datum(ϑ0, χ0) ∈ C0 and let the system evolve from this datum. Let us test
(3.11)by the time derivative ofα(ϑ). Then, let us differentiate(3.12)in time and test the result byc0χt . Taking the
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sum, noting that two terms cancel, and using the monotonicity ofβ together with properties(3.2) and (3.3)we infer

c∞
2

|ϑt|2H + c′0
2
|∂t(logϑ)|2H + d

dt
‖α(ϑ)‖2

J + d

dt

(c0

2
|χt|2H

)
+ c0|∇χt|2H ≤ d

dt
〈f, α(ϑ)〉

− c0

∫
Ω

γ ′(χ)χ2
t − b

∫
Ω

2′(ϑ)ϑtχt (6.4)

and again we have to control the right-hand side. First, we notice that the latter two terms, owing to (A1) and (A3),
are bounded as follows:

−c0

∫
Ω

γ ′(χ)χ2
t − b

∫
Ω

2′(ϑ)ϑtχt ≤ c∞
4

|ϑt|2H + c|χt|2H. (6.5)

Next, we define the functional

Ψ(ϑ, χ) := ‖α(ϑ)‖2
J + c0

2
|χt|2H − 〈f, α(ϑ)〉 + C(f), (6.6)

where we have setC(f) := ‖f‖2
∗,J /2 (with obvious notation), so that

Ψ(ϑ, χ) ≥ 1
2c0|χt|2H + 1

2‖α(ϑ)‖2
J ≥ 0. (6.7)

Thus, relation(6.4)can be clearly rewritten as

d

dt
Ψ(ϑ, χ)+ c10[|ϑt|2H + |∂t(logϑ)|2H + |∇χt|2H ] ≤ c11(1+ |χt|2H) (6.8)

for all t ∈ (0,+∞) and for somec10, c11 > 0 also depending onf . Then, the uniform Gronwall’s lemma yields

Ψ(ϑ(t + 1), χ(t + 1)) ≤ c11(1+ ‖χt‖T2(H))+ |Ψ |T1(R) ∀t ≥ 0, (6.9)

which is a bounded quantity since

|Ψ |T1(R) ≤ c‖α(ϑ)‖T2(V) + 1
2c0‖χt‖T2(H) + ‖f‖∗,J ≤ cϕ(RC0)+ ‖f‖2

∗,J (6.10)

by Corollary 5.3, (A1), (A5), and(3.6).
Finally, by (A1),(3.2) and (6.7), this clearly entails

‖ϑ(t)‖2 +
∥∥∥∥ 1

ϑ(t)

∥∥∥∥
2

+ |χt(t)|2H ≤ c(RC0) ∀t ≥ 1. (6.11)

Second step. The forthcoming procedure can be applied for anyβ, but is needed only asD(β̂) is not closed, in
order to show(3.42)(with χ(t) in place ofvn). Let us test(3.12)byBχ+ ξ. By monotonicity ofβ, it is then clear
that

|ξ(t)|2H + |Bχ(t)|2H ≤ c

(
1+ ‖χ(t)‖2 + |χt(t)|2H +

∣∣∣∣ 1

ϑ(t)

∣∣∣∣
2

H

)
. (6.12)

Thus, since(ϑ0, χ0) ∈ C0, by (6.11), it follows that:

|ξ(t)|2H + ‖χ(t)‖2
W ≤ c(RC0) for a.e. t ≥ 1. (6.13)

We actually remark that the bound above holds forall t ≥ 1 as far as theW-norm of χ is concerned. Indeed,
(6.13), together with(3.9), yields thatχ ∈ Cw([0,+∞);W). This, a priori, is not true forξ which is not known to
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be time-continuous with values in any space; indeed, the procedure just yieldsξ ∈ L∞(0,+∞;H). However, we
claim that this entails that there existsc(RC0) > 0 such that

|β0(χ(t))|2H ≤ c(RC0) for all t ≥ 1. (6.14)

Actually, let us prove the above for a generict̄ ∈ [1,+∞). Approximatēt by a sequence{tn} ⊂ [1,+∞), tn → t̄,
of times such that the inequality in(6.14)holds fort = tn. Let us set

χn, ξn : Ω → R, χn(x) := χ(x, tn), ξn(x) := ξ(x, tn).

Then, as

χ ∈ H1(0,+∞;V ′) ∩ L∞(1,+∞;W) ⊂ C(Ω̄× [1,+∞)),

we have in particular thatχn → χ(t̄) uniformly inΩ. Moreover, we can assume thatξn ∈ β(χn) a.e. inΩ.
Thus, sinceβ0 is a monotone function, it is easy to see that

|β0(χ(x, t̄))| ≤ lim inf
n→∞ |ξn(x)| a.e. inΩ, (6.15)

whence(6.14), written for t = t̄, follows by squaring, integrating overΩ, and applying Fatou’s lemma.
This actually concludes the proof of Theorem 3.16; indeed, ifD(β) is closed, then, by(6.11)and the first case

of Proposition 3.15, we easily see that condition(2.18)holds. Otherwise, the same is true by(6.14)and the second
case ofProposition 3.15. �

Proof of Theorem 3.17. The procedure is very similar as before; thus, we just outline the differences. The compu-
tation in Step 1 is modified as in the previous cases and this leads to replace

1
2c0|χt|2H with 1

2c0‖χt‖2
∗

in the left-hand side of(6.4)as well as in the definition ofΨ (cf. (6.6) and (6.7)). Moreover, we have to notice that
the latter term in(6.5), by the compact immersionV ⊂ H (cf. (4.10)), has to be controlled this way

c|χt|2H ≤ 1
2c0|∇χt|2H + c‖χt‖2

∗.

Then, Step 1 is completed as before if we substitute theH-norms ofχt with V ′-norms in(6.8)–(6.10), and we use
Corollary 5.4instead ofCorollary 5.3. Thus, in place of(6.11), we now get

‖ϑ(t)‖2 +
∥∥∥∥ 1

ϑ(t)

∥∥∥∥
2

+ ‖χt(t)‖2
∗ ≤ c(RC0) ∀t ≥ 1, (6.16)

where the absorbing setC0 is now intended to depend also on�, of course.
We finally have to modify Step 2. For simplicity, we just consider the case whenD(β) is open and bounded.

Then, as we test(3.20)byBχ, we can proceed similarly as before and get the inequality forχ in (6.13). To bound
the norm ofξ(t), we have to repeat precisely the argument of[15] already used in the previous section; thus we get
again(5.38)at the timet ≥ 1. On account of(6.16), this gives the second bound in(6.13), a priori just fora.e.t ≥ 1.
However, proceeding as before we can show again(6.14)for all t ≥ 1 and conclude the proof. �
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