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Abstract

A singular parabolic system describing the thermal diffusion in a substance possibly subject to a phase transition is
introduced. The physical process is described by the varigb{ebsolute temperature) and(order parameter). The latter
may have, or not, conserved total mass with respect to time. In both cases, after recalling and sometimes improving some
known well-posedness results, the long-time behavior of the system is studied. It is shown that the process is dissipative and
the compact universal attractor is constructed. It turns out to attract the trajectories of the system in a rather strong metric
which is strictly linked to the constraints imposed to both variables. The techniques used in the proofs seem likely to be
applied to other types of evolution systems containing maximal monotone nonlinearities.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper we consider some singular parabolic systems coming from the so-called Penrose—Fife model for
phase transition phenomena introduced2,21] More in detail, we address the problem of existence of the
universal attractor for a rather general class of these models. Moreover, it is worth remarking at once that the
techniques used in the present analysis seem suitable to be applied to other types of singular evolution systems.

In order to introduce the precise mathematical problem, let us consider a smooth bounded céhtaifi,

1 < d < 3, occupied by the substance undergoing the phase transition. Nantky the basic state variables of the
process, corresponding to thbsolutetemperature (hencé, > 0) and to the order parameter, respectively. Then,
the energy balance equation, describing the evolutiah can be written in the forrfv,9]

30+ A00) — Aa(V) =g, (1.1
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whereg is the volumic heat sourcg(-) a smooth function accounting for the latent heat, @and0, +oc0) — R is
an increasing and concave function such that

1
a(r) ~—— forr~0, a(r)y ~r forr~ 4oo. (1.2)
r

Then,(1.1)is coupled with the kinetic equation for the phase variable. We will consider botiotheonserved

)\'/
X —Ax+ B +y(x) > — ;X) (1.3)
and theconservedase
dx — Aw =0, (1.4a)
)\'/
we—Bx+B00+ 00+ 2. (1.4b)

In both (1.3) and (1.4hk)B is taken as a generalaximal monotone grapipossibly multivalued, coming from the
convex part of alouble-wellfree energy potentigR0] andy is a smooth function accounting for its nonconvex
part. Moreover, relatioKil.3)is assumed to be complemented by the homogeneous Neumann boundary condition
for x, while in the case of1.4) we take such conditions both farand for the auxiliary unknowm, generally
calledchemical potentialFurthermore, third type conditions are assumedsfand the whole systen{4.1) and
(1.3)and(1.1) and (1.4pare complemented with the Cauchy conditionsifand .

Of course, the singular character of the systems above is given by the presence of the congixaiatsiig
¥ > 0, andB(x), that can be chosen to forgeto attain solely values belonging to a bounded intervakof he
presence of this kind of nonlinearities is the main difficultfbfl) and (1.3)(1.1) and (1.4)and the related results
on well-posedness are relatively recent. Actually, the nonconserved sfistBrand (1.3has been first addressed
in the papef7], where existence of a global solution has been proved for a much wider class of functiars
those given by(1.2), provided that. is Lipschitz continuous along with its first derivative. In casis chosen as
in (1.2), further regularity and unigqueness of the solution have been shoj@h. im [22] these results have been
extended to the fourth-order (conserved) cdsg) and (1.4jn a more general setting possibly includitigermal
memoryeffects.

Taking the results 0f7,9,22]into account, in this note we address some further questions related to the systems
above, with the main task of proving the existence of the universal attractor in both the nonconserved and the
conserved case. We have to notice that, while several papers (se-eldl0—12,17] have been devoted to the
analysis of long-time behavior of phase-field model€aginalp[8] type, it seems that very few results have been
obtained, up to now, for the parabolic Penrose—Fife models. This seems to be due to the starjiléffidicbice of
asingularheat flux law of the forna(r) ~ —1/r, which gives rise to a strong lack of coercivity of the system with
respect ta?. Actually, as far as we know, this form of the heat flux has been dealt with ofilydii4,23,24]More
in detail, in[14] the existence of aweak form(see below) of the universal attractor is shown in the nonconserved
case, provided that a zero-order dissipative tetnfior smalle > 0 is added on the left-hand side df.1). In the
same setting, but only referring to one space dimension, the structure of the attractor is further investjgated in
where the existence of dnertial set[26, Section VIII]is shown. We have to notice that the testhin [13,14]
plays an analogous role as our heat flux [@w2) in providing further dissipativity for the unknowh

To our knowledge, the syste(.1) and (1.4with a(r) ~ —1/r, and without the addition of the dissipative
terme?d, has only been studied in the recent pap2ds24], dealing with the conserved and the nonconserved case,
respectively. IM23,24] the existence of a uniform attractor is proved in one space dimension; however, a strong
constraint is imposed a priori on the initial data, which have to be chosen in a very small phase space. We observe
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that a functiork. of quadraticgrowth at infinity is allowed if23,24] however, the analysis is limited gir) ~ r3,
i.e., to the standard double-well cgd82.

Due to the difficulties related to the choieé) ~ —1/r, in this note we address the diffusion 1§w2), which can
be motivated by thermodynamical considerations[{if and guarantees to the system a good parabolic structure
with respect to#. On the other hand, before addressing the question of existence of the attractor, we have to
discuss in some detail the properties of the semigroups associated to the siisieénasid (1.3)and(1.1) and
(21.4). In this concern, we show some continuous dependence theorems which turn out to improve some results in
[9,15,22]referring to systems very similar to our ones. Namely, we are able to prove Lipschitz continuity of the
semigroup associated to the nonconserved system with respect to a weak md8i249f.In the conserved case,
as in[4], we just have 1/2-Hdélder continuity, unless some growth conditions are assumged’ base theorems,
beyond constituting a basis for the subsequent asymptotic analysis, appear to deserve an independent interest
indeed.

In the second part of the paper, we prove existence of the universal attractor both for the(systamd (1.3and
for (1.1) and (1.4)n the three-dimensional setting. In order to unify these situations, we limit ourselves to consider
affinelatent heat functions given by(r) = br for » € R. In a forthcoming paper we will deal with a nonlinear (and
possibly quadratic, cf20]) ». However, this seems to work only in the nonconserved case.

We also point out that our analysis is performed in a phase spadach is smaller than that considered, e.g., in
[13,14] Such a se’is chosen precisely as the space of the initial data satisfying the conditions required for having
existence of a solution. It is clear that these conditions strongly depend on the constraints imposed on the variables.
Actually, we are able to prove that is a complete metric space with respect to a suitable mégjavhich is
stronger than the metric appearing in the Lipschitz (or Holder) continuity results since it has to take the constraints
into account. Our choice, however, seems to be an appropriate one, since the semigroups are still continuous (but
no longer Lipschitz or Hélder continuous) dty; moreover, we are able to prove the existence @f-&ompact set
whichabsorbsany bounded set of. Of course, as a consequence, we obtain the existence of the compact universal
attractor.A both in the nonconserved and in the conserved case. The absorbing set constriietkdsra subset
of their (bigger) phase spacg instead, is not able to absorb all the bounded sé&t, dut only those subsets which
are bounded with respect to a stronger metric, which is similar to the one ot'and is related to the energy
functional on which relies the variational structure of the system. This is the reason why the set constiddifed in
can be defined aswaeakattractor, while we are able to constructteongattractor.A, which attracts alk-metric
bounded sets and does this in the proper metyic

This approach, which is technically much more complicated since it requires a control of the nonlinear constraints
in the dissipativity estimates, has the advantage of giving more information on the solution. Namely, the metric
dy yields some control on the asymptotic behavior of béthnd its inverse, and also of the tegty), which
was not provided by the metric used, e.g.[1d]. Of course, the latter information can be more, or less, relevant
depending on the growth conditions that are assumegf. dn general, anyway, this reinforcement of the metric
structure of the phase space appears to provide a rather natural framework for studying the dissipativity of parabolic
evolution systems with maximal monotone nonlinearities, and applications to several different physical situations
should certainly be possible. On the other hand, we have to remark that in this setting it does not seem possible
to address the question of existence of an inertial sef18}), at least using the metrity. Indeed, the continuity
properties of the semigroups with respecitaas well as the topological structurefappear too weak to apply the
related general theory. It might be possible, anyway, to show the existence of some set which attracts exponentially
thedy-bounded set, but with the attraction property holding in some metric weaked than

Here is the plan of the paper. In the next section, we shall present some notations and mathematical preliminaries.
In Section 3we will provide our basic hypotheses on data and give a detailed construction of the phase space for
our analysis. Moreover, we will state our precise mathematical results. The proofs will be achiSestion 4
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which is related to the questions of well-posedness and continuity of the semigro@estion 5 which regards
dissipativity, and irSection § which carries the proof of existence of the attractors.

2. Preliminaries

In this section we introduce some notations and recall some preliminary machineries which are needed to state
our problems in a precise way.

First of all, let us defind™ := 352 and, fort > 0, Q, := 2 x (0, 7). Then, let us sell := L2(2), V := HL(2),
and endow both spaces with their usual scalar products. We iddiitéynd its dual, in order that the compact
inclusionH c V' holds andV, H, V') form aHilbert triplet [18, p. 202] We denote by- |, or sometimes by- |,
the norm both inH and inH¢, by || - || the (usual) norm irV, by || - ||, that in V’, and by|| - |x the norm in the
generic Banach space Finally, we indicate by, -), ((-, -)), ((-, -))«, the scalar products iff, V, V’, respectively,
and by(-, -) the duality pairing betweel’ andV.

Next, for any¢ € V' we set

1
Voi={teV :itp=0} Vo:=VNV,. (2.2)

The above notatiorV; is suggested just by the sake of convenience; indeed, we mainlygség as (closed)
subspaces of, V’, inheriting their norms, rather than as a couple of spaces in duality.
We introduce the realization of the Laplace operator with homogeneous Neumann boundary conditions as

B:V >V, (Bu, v) = /;Vu -Vvdx foru,veV. (2.3)
Clearly, B mapsV onto V{ and its restriction td/p is an isomorphism o¥ onto V5. We denote byV': Vi — Vo
the inverse o3, so that for any: € V and¢ € V; there holds

(Bu, N¢) = (BNZ, u) = (¢, u). (2.4)
We also define

W= {ve H?(£2): v =0o0onTl}, (2.5)

which is a closed subspace BF(£2) by continuity of the trace operator.
By using the Poincaré—Wirtinger inequality we can easily see that the norm

1/2
(f |V<N;>|2) = (L, No)Y?2 for¢ e Vi (2.6)
2

is equivalent to the norriz||, and we will use it, when it is convenient.
Let us now recall some notation and basic concepts from convex analysig.:[Rt— (—oo, +00] a convex,
l.s.c. (i.e. lower semicontinuous), aptbperfunction. The latter means that tdemain

D) = {r € R: 7(r) # 400} 2.7)

is not empty. We note thdd(7) has to be a convex set, of course. Then, it is well known[§fp. 43) that the
subdifferentiabr := 97 is amaximal monotone graph R x R. Thedomainof r is defined by

D(n) = {r e R: n(r) # 0}. (2.8)
In this situation we will say that is aconvex primitiveof .
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In the sequel we will also use some spacesL@g-translation boundedunctions; actually, ax is a Banach
space ang € [1, +oc0) we set
t+1
T’(X) = {v e L} .(0,+o0; X) : sup lus)ll < +oo ¢, (2.9)

t>0 Jt

which is a Banach space with respect to the natural (graph) norm
+1
115 ) = sun/ lvs)II%- (2.10)
>0 Jt

As a generalization of the above definition, we also sety ferO0,

t+1
T(X) = {v € L (0, +o0; X) : sup lvs)lI < +oo} , (2.11)

>t Jt

and a seminorm fof? (X) is defined by merely mimickin¢®.10)
We now recall the statement of the so-calledform Gronwall's lemmégsee, e.g.[26, Lemma I11.1.1}.

1

ioc(0, +-00) three non-negative functions such that Lt (0, +00) and

Lemma2l. Lety,a,be L loc

Y <a@®y(@) + b)) forae.t>0, (2.12)
and letas, as, a3 three non-negative constants such that
lalpg) <a1.  Iblpg) <a2,  IYlag, <as. (2.13)
Then we have that
v+ 1) < (az + az)e’* forallt > 0. (2.14)
Now, let us recall some basic notions on absorbing sets and attractors. Given a strongly continuous semigroup
S(#) on a complete metric spac&, dx), we say thal3g is anabsorbing sefor S(z) iff:

e By is bounded;
o for any bounded sdf C X, there exists a tim&z > 0 such that

SHOBcC By Vt=>Tg. (2.15)

Next, a sefC C X is said to beuniformly attractingfor the semigroug(¢) iff for any bounded seB C X, we have

Jim 2508, K) =0, (2.16)

whered denotes thanilateral Hausdorff distance of the s&tr) 3 from K, with respect to the metric of, i.e.

0SB, K) := sup inf dx(y,k). (2.17)
yeS(nB kek

Finally, a sefC is theuniversal attractorof the semigroufs(z) iff:

e K is attracting and compact iK;
e K is fully invariant with respect t&(z), i.e. S())K = K forall t > 0.
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We remark that the universal attractor, if it exists, is certainly uniqugZ6f. Section 1.1.3} moreover, it is a
connected set. Let us finally report the statement of a general abstract criggjorheorem 1.1.1providing a
sufficient condition for the existence of the attractor.

Theorem 2.2. Let S(r) be a strongly continuous semigroup on the complete metric sPaaéy). Let us assume
that

e S(¢) admits an absorbing séy (dissipativity;
o for any bounded séf C X, there existsz > 0 such that

U S@®B iscompactinX (uniform compactness (2.18)

t>13
Then S(r) admits the universal attractdC which is given by

K=o —limS®Bo) =) | S0Bo. (2.19)

120 127

3. Main results

We start by stating the precise mathematical formulations of systgérhyand (1.3)and(1.1) and (1.4)and
presenting the related well-posedness results. In the sequel we partly [é]@&2] First, let us give our basic
assumptions on data, covering both the nonconserved and the conserved case:

(A1) « € CL((0, +00); R) is increasing and concave and fulfiigl) = O; moreover, there exisl, coo > 0,
¢ € C1((0, 4+00); R) such that

o) =—-2L 400, £ e L0, +00), im0 = ca: (3.1)
r r/+o0

(A2) there existd € R such that.(x) = by forall r € R;

(A3) y € CY(R), y' € L®(R), and we seL := [|y/[| L= (R);

(A4) Bis amaximal monotone graph R x R such that Gz int D(8) and Oe S(0);
(A5) g € L?(2), h € L*(D);

(AB) 9o € H, 99 > 0 a.e.ins2, and logyg € L1(£2);

(A7) xo €V, B(xo0) € LX9).

In (A7), B : R — [0, +o0] is the convex primitive of8 fulfilling B(0) = 0.
Remark 3.1. Assumption (A5) could be generalized in several directions; for instance, less regular data, or even
data suitably depending on time, might be considered.
Itis clear from (Al) thatr satisfies the following additional properties. First,
o' (r) > coo Vr e (0, +00), IimO 2 (r) = co. (3.2)

Moreover, there existsz > 0 such that

2

o (r) = cor=° Vre (0,400). (3.3)
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Let us specify the precise form of the third type boundary conditions compleméhtifjopve assume that for some
no > 0anda.er> 0itis

—dna(9) = no(a(®) —h) onl (3.4)

Consequently, we introduce the operator
J: V>V, (Jv,z)::/Vv~Vz+no/ vz forv,zeV, (3.5
2 r

this is indeed the Riesz mapping associated to the npﬂtﬁ := (Jv, v) on V, which is equivalent to the stan-
dard one and will be used in place of it, when it is convenient. Finally, we define the generalized heat source
term as

(fo) = (g, v>+/ he Woev, (3.6)
r

indeed, we remark that (A5) entaifse V.
Now, we are ready to recall the resfilt Theorem 2.3}elated to global existence and regularity in the noncon-
served case.

Theorem 3.2. Let us assum@A1)—(A7) and take anyT" > 0. Then there exists at least one tripléf, x, &) such
that

% e HYO, T; V)N %[0, T]; HH N L%, T; V), ¢ > Oa.e.in Or, (3.7)
% e L*0,T; V), 3.8)
x € HYO, T; H N C°(0, T]; V) N L3O, T; W), (3.9)
£€ L0, T; H). (3.10)

The triplet(¥, x, &) satisfies

3 +bx) + J®) = f InV'ae.in(O,T7), (3.11)
Ix+Bx+&+y(0) = —g a.e.inQr, (3.12)
xe D) and £eB(x) ae.inQr, (3.13)
9(0) =09,  x(0) =yx0 ae.ing. (3.14)

Remark 3.3. Relation(3.12)can be formulated “a.e. i@ 7" rather than “inV’ a.e. in(0, 7)" thanks to(3.8) and
(3.9). Moreover, we note thgB.7), (3.8), and (A1) entail that

a(®) € L2(0, T; V). (3.15)

Now, let us come to the fourth-order case; the following result can be proved similarly{23, ifheorem 2.1]
where a slightly different problem is addressed.
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Theorem 3.4. Let us assum@Al)—(A7)and

1 .
(A8) xe = (oo = —/ X0 € int D(B).
12| Jo

Take anyl" > 0. Then there exists at least one quadrugl® x, w, &) satisfying(3.7), (3.8)and(3.10) and
w e L?(0, T; V), (3.16)
x € HXO,T; V)N L*®(0, T; V) N L%, T; W). (3.17)

The quadruplgd, x, w, &) fulfills

3D +by) + J@®) = f inV a.e.in(0, D), (3.18)
dx+Bw=0 inV'ae.in(@,7), (3.19)
w= By +&+ 00+ g iV g.e.in (0, 7, (3.20)
xeD@P) and £eB(x) ae.inQr, (3.21)
90) =0,  x0) =xo0 ae.ins2. (3.22)

Finally (cf. (2.1)), we have that
1
— / xt) =xe Vtel0,T]. (3.23)
121 Je

We remark that the above results neither include uniqueness nor continuous dependence. Actually, uniquenes
has been proved i[9, Theorem 1) nonconserved case) and[R2, Theorem 2.2[conserved case). However, the
results of Colli et al[9,22], which can deal with a nonlinear (but Lipschitz)hold just under stronger regularity
assumptions on the initial and source data. Thus, we have to provide a generalization suitable to our less regula
setting. In this direction, we present a number of theorems which should make clear the structure of the semigroups
associated to the systems above.

First of all, we state two Lipschitz continuity results, entailing in particular uniqueness of the solution, and holding
for A(x) = by in aregularity setting compatible with (A1)-(A7). We first address the nonconserved case, where we
can prove the following theorem in the spiritjd#, Theorem 3.1jvhich should hold, with the proper modifications,
also for more general (e.g., quadratic) functians

Theorem 3.5. AssumdA1)—(A7). Then the solution(®, x, &) provided byTheorem 3.2s unique More precisely
there existC > 0 depending only o2, 7, cg, ¢, @nd L such that for any two couples of initial dat&o 1, xo.1)
and (99,2, xo0.2), denoting by(d1, x1, §1) and (92, x2, £&2) two corresponding solutions #8.7)—(3.14) for any
t € [0, T] we have

11 = 92)(0) + bOxa = xDDIZ + 191 = D207 20 1.1 + 102 = XD + 1V 02 = %2226, 1
< C(I(Bo.1 = V02) +b(x01 — x02IIZ + | x01 — x0.21). (3.24)
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In the conserved setting the analog of the above theorem holds just for a more restricted class ¢:graphs
(A9) Letp e CL(R) and let us assume that there exisfs> 0, p < 7, such that
B'(r) <cpgL+1r|’) VreR. (3.25)
Of course, if (A9) holds, then (A8) is automatically satisfied fogglfulfilling (A7). We have the following theorem.

Theorem 3.6. AssumgAl)—(A7) and (A9) and considerwith the same notation as abgwevo solutions to the
conserved system. Thdar anyr € [0, T] we have

101 = 92)(0) + b = xDDNZ + 191 = 203 20,17y + 102 = XD OIZ + IV X1 = 12120111
< Cl(Po1 — P0.2) + b(x01 — x0.2)IZ + x01 — x0.2l1% + [(x0.1)2 — (x02)2/%). (3.26)
whereC is allowed to depend also on the normsxafand x2 in (3.17)

For a general graph(i.e. without (A9)) in the conserved setting we just have Holder continuity, [@s iheorem
3.1].

Theorem 3.7. AssumgAl)—(A7) and considerwith the notation abovawo solutions to the conserved system
where both the initial dateo 1, xo.2 fulfill (A8). Then for any: € [0, T] we have
101 = 92)(0) + b = xDDNZ + 191 = D207 20,17y + 102 = XD OIZ + IV X1 = %2 120,1.11
< C(IPo.1 = V02) +bxo1 — x02)II2 + lx0.1 = x02lI2 + [(x0 D2 — (02 el +(0De — (X022l
(3.27)

whereC is now allowed to depend also on the normgpénd x2 in (3.17)and on the norms af andé; in (3.10)

Looking back to the results stated up to this point, we notice that, in order to have existence, we choose rather
regular initial data (cf. (A6) and (A7)); conversely, the continuous dependence theorems hold with respect to much
weaker norms. Thus, in order to define the phase space for the asymptotic analysis, we have to make a choice
between the less and the more regular setting. Actually, we decide to work with the stronger norms and take

H = L%(2) x HY($), (3.28)
which is endowed with the natural norm; moreover, we put
Xi={(u,v) e H:u>0aein, log” u+ B € L1 ()} (3.29)

(here and in the sequé)™ := max{—(-), 0} denotes the@egative parfunction). Let us note thatg, xo) € Xif
and only if it satisfies (A6) and (A7).
In the analysis of the conserved case we will also consider the following family of subs¥ts of

X = {,v) € Xim < ve < n2l, (3.30)
where
N1, n2 € intD(B) withny <0, n2 > 0. (3.31)

Here and below, the notatiam stands for the couplé1, 12). The following simple property will allow us to use
X and Ay, as phase spaces for our systems.
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Lemma 3.8. The setst and Xy, ¥n as in(3.31) are complete metric spaces with respect to the distance
dx((u1, v1), (u2, v2)) = |ug — ua| + / llog™ u1 —log™ ua| + [lv1 — vall + / By — B2l (3.32)
Q2 Q2

Proof. We give the proof for; clearly Ay, is a closed subset of its. Léik,, v,) be a Cauchy sequence M
Then, of course there exists, v) € H such that(u,, v,) — (u, v) in H. Furthermore, we can assume that, at
least for a subsequence (which is not relabeled) such a convergence holds also poinfwvi3éém, by Fatou’s
lemma,

/ log™ u < liminf / log™ u, < +o0, (3.33)
Q Q

which shows that: > 0 almost everywhere and log: € L1(£2). Let us see that the same procedure applies to
B(v,). Actually, by convexity and lower semicontinuity gf we readily have tha(v) € L(£2). Moreover, for

a subsequenc@(v,) — B(v) a.e. inf2. Indeed, since is convex and |.s.c., its restriction to the domaigg) is
clearly continuous. Then, if we denote Ry, (resp.,A) the set of the points € 2 such that, (x) ¢ D(,B) (resp.,
v(x) ¢ D(B)), we have that

|A,] =0 Vn and |A|=0, sothaiu, A, UA|=0. (3.34)

From the above, it is clear thé(v,,) — B(v) a.e. inf2\ (U,A, U A) and then a.e. i®2. Finally, since log u,,
B(v,) are Cauchy sequenceslin, it is easy to conclude that they (the whole sequences) converge to the respective
limits B(v), log™ u in L1(£2), as desired. O

The next step consists in proving the continuity of the map
S(®) 1 (Do, x0) = (¥(0), x(1) (3.35)

in the nonconserved case ang as in(3.31) the continuity of the (identically defined) mafg () in the conserved
case. We first state a regularity property as follows.

Lemma 3.9. If x is as inTheorem 3.Zor as inTheorem 3.4, then we additionally have
x€C%0,7]; V) and B(x(») e L*(2) forallz €0, T]. (3.36)

Moreover for all s, ¢ € [0, T], there holds the integration by parts formula

t v 2 " V 2 n
/ (X1 B + &) = / [' XZ(”' +ﬂ(x(t))]— / [' Xz(s)' +f3(x(S))]- (3.37)
s 2 2

Remark 3.10. The first property in(3.36) is trivial in the nonconserved case, since the spHE€0, T; H) N
L2(0, T; W) turns out to be continuously embedded igf&([0, 7]; V) (see, e.g[1, Lemma 6.3).

Lemma 3.9s the fundamental tool for proving that (Gfheorem 3.1}, starting from(dg, xo0) € X, S(t)(J0, x0)
belongs toX’ (resp.,Sy () (Jo, xo) belongs tody)) for every(and not just a.e > 0. Then, the proof of conti-
nuity of the mapS(z), still provided by the following theorem, requires an additional hypothesis in the conserved
case.
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Theorem 3.11. Assumé&A1)—(A7). Thenthe mapS(¢) defines a strongly continuous semigroupfor the system
(3.11)—(3.14)Analogouslylet us assum@Al)—(A7) and

(A10)  £(9) =cod, sothai(d) = —C—; F ool

Then for anym as in(3.31)(cf. (A8)), Sy () is a strongly continuous semigroup &#, for the systeni3.18)—(3.22)

Remark 3.12. Lemma 3.9andTheorem 3.1MWwill be proved in the next section. A modification of the argument
that will be used in the proofs yields a further noteworthy consequence, i.e. it can be shown that(fonary X,

the solutionS(r) (x, v) belongs to the metric spac®([0, T]; X), and the same holds in the conserved case. We will
omit, for brevity, the simple details of the proof of this property.

We now have the basis for discussing the existence of absorbing sétg)fand Sy, (¢). First of all, we have to
reinforce (very slightly, indeed) our assumptionsgn

(A11) Assume that there exigt, k2 > 0 such that:
s> —ky Vre D(B) Vs € B(r). (3.38)

Of course, (All) holds if eitheg is a polynomial of at least degree 3 pris aconstraint(i.e. it has a bounded
domain). Assumption (A1l) might be further relaxed; however, we keep it in this form since it covers all the
physically meaningful cases.

Let us also note that, by monotonicity 8f (A11) entails that, for somes, k4 > 0,

st> B(r) > kar* —ka Vr e D(B) Vs € B(r). (3.39)

We can now state our results concerning the dissipativity of the system.

Theorem 3.13. AssumdA1)—(A7) and(All). Then the semigrous(s) possesses an absorbing #etwhich is
bounded in the metridy.

Analogously, we have the following theorem.

Theorem 3.14. AssumgA1)—(A7), (A10),and(A11). Then for anyy as in(3.31) the semigrougsy, (1) admits
an absorbing seBp vy which is bounded in the metrity (with the bound depending ay).

In the proofs of these theorems, which are present&eution 5 we will better describe théxy-bounded sets.
As a next step, in order to address the problem of existence of the attractor, we have to introduce two further
spaces (cf(2.5)) by setting
1
V::{(u,v)e)\f:ueV,—eV,veW}, YV =VN Ay (3.40)
u
We note thal andVy), endowed with the natural distance

1 1
dy((u1, v1), (U2, v2)) = |lug — uz|| + H w m H + [lvy — vollw (3.41)

aremetric spacesMoreover, the following property holds.
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Proposition 3.15. If D(B) is closedtheny c X with compact immersigmamely if («,, v,) is a dy-bounded
sequence iy, then there exist&, v) € X and a subsequence @f,, v,) converging tau, v) in dy. If D(8) is not
closed then the same is true provided that there exists 0 such that

/ 1(B)%(wn)| <c VneN, (3.42)
2
where forr € D(B), B°(r) denotes the element of minimum modulug(in.

Proof. Let (u,, v,) bedy-bounded. We first note that, by the standard embeddings between Sobolev’s spaces,
u, — u stronglyinH and ae.in 2, v, — v stronglyinV N C(2) (3.43)

at least for a subsequence (not relabeled). Then, by a.e. convergence and Lebesgue’s theorem,

1 1
— — — stronglyinH and ae. in £2. (3.44)

Un u

Next, by a.e. convergenc.44) the fact that log r < 1/r for all r € (0, o0), and Lebesgue’s theorem again, we
have also that

log™ u, — log~u stronglyinL(£2) (3.45)

(actually, much more is true). Next, let us treat the term Wittarting from the first case (i.@(8) closed). Then,
we have already remarked that the restrictiorﬁab D(B) is continuous. As@(vn) e LY($) for all n andv, is
continuous, it follows that, (x) € D(B) for all x € £2 and for alln € N. Then, by the last of3.43) v(x) € D(B)
for all x € £2; moreover, the sequeng&v,) is uniformly bounded and tends f&v) uniformly in £2, which, of
course, is enough to conclude.

Let us now assume thax(B) is not closed, together with conditigB.42) Just for simplicity, assume that(8)
is an open bounded interval; the other cases are treated similarly. Aiiea monotone function, we have

B(r) =/O B(s)ds Vr e D(B) = D(B). (3.46)

Then, for anyp € [1, 2) and, e.g.r > 0, we have that

~ r r g0 p
BP(r) / ﬂo(s) ds p g [ 1 B°(s) ] - : rp
0

1
(B2 (BH2(r) (BOY@PIr(r) Jo BOr) 89@P) (1)

and the latter quantity is clearly bounded away from zero and uniformiyThen, using again th#(v, (x)) tends
to B(v(x)) for all x € £ (just pointwise, since how botB(v, (x)) and B(v(x)) might be+oco for somex € ),

(3.47) and (3.42pasily yield that the sequengev,) is bounded inL”($2) for all p € [1, 2), so that we conclude
again by a.e. convergence and Lebesgue’s theorem. O

(3.47)

Let us note that the result above can be extended in the obvious way to the Bgadag. We finally state our
existence results for the universal attractor, which will be show®eiction 6

Theorem 3.16. Let(Al)—(A7) and(A1l) hold. Thenthe semigrous(s) possesses a compact attractor which is
bounded in the metridy,.

Theorem 3.17. Let(A1)—(A7), (A10),and(A11) hold. Thenfor anym as in(3.31) the semigroufsy, (r) possesses
a compact attractor which is bounded in the mettj¢ again with the bound depending ap
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4. Continuous dependence

In this section we address the questions of well-posedness and continuous dependence for ouf3s¥4jems
(3.14) and (3.18)—(3.22) From now on and up to the end of this note, the symbualill be used to indicate
the possibly different strictly positive constants appearing in the computations and assumed to depend only on
£2,¢, L, b, cg, coo @and, in particular, not on the time variable. When we need to denote some constant (depending on
the same parameters as above) that plays a specific role, a notatiop like. . . will be used, instead. A constant
noted, e.g., ag, will be allowed to depend by an additional (small) positive parameter @er€or instance, in
the sequel we will repeatedly use the elementary Young inequality, holding for all paesifivéhe form

ab < 0a® + c,b®> Va,b € R. (4.1)

We start by addressing the nonconserved system.

Proof of Theorem 3.5. Letusset(d, x) := (91, x1) — (F2, x2). Writing (3.11)firstly for (¢1, x1), then for(d2, x2),
taking the difference, and integrating o€ ¢), we get

(@ +bx) + J(A * (a(P1) — a(¥2)) = (Yo,1 — Yo,2) + b(X0,1 — X0,2) (4.2)

wherex denotes the usual convolution operato0yy). Let us multiply this relation bw (1) — «(2) and integrate
over £2. Then, we get, foeveryr > 0,

1d
(@ + b, a(1) — a(@2)) + 5 - lI1* (@(@1) — a(#2)]15 = (P01 — Y0.2) + b(x01 — x02). ¢(P1) — (¥2)).

(4.3)
Moreover, recalling (Al) an€3.2) and using the mean value theorem &4d), we readily get
1 2 2 1 1
(@ + by, a(P1) — a(P2)) > 5¢0lP” — clx|® — cobx o 9l (4.4)

Next, taking the difference ¢8.12) multiplying it by x, and taking the integral ovee, by (A3) and (A4) we obtain

S VxlI*<Lixl*—bx(—-—). 4.5
S X"+ IV IxI” —bx 51 s (4.5)

Thus, multiplying(4.5) by co and summing the result {d@.3), we note that by4.4)two terms cancel and get

o092, 1d _ 2, cd o 2 2 _
5 [9]° + 2dt||1>'<(0«4(191) a(@2)I5 + 5 dt|X| + colVxI© < clxI® + ((Po,1 — Do,2)
+b(x0,1 — x0,2), (V1) — a(V2)), (4.6)

whence, integrating oveD, ) for r < T, observing thatdo 1 — ¥0.2) + b(x0.1 — x0.2) is independent of time, and
splitting the last term with respect to the duality betwé&rand V, we see that the standard Gronwall's lemma
applies. Then, to gd8.24)it is sufficient to notice that a comparison in relati@11) (integrated in time) gives,
for somec > 0,

el (@(®1) — a@)) D)3 = (9 +bx) D)% — 2|90 + bxoll?. 4.7

|
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Proof of Theorem 3.6. Let us defing®, x) as in the proof ofTheorem 3.5and also set, with obvious meaning,
w = w1 — wp. Then, we work or{3.18)as in the nonconserved case and get aghB). Next, we put
1
mop ‘= @
and note that by3.36) (which is shown below), it ig(¢) € Vo for all ¢ € [0, T], so that it is possible to te$8.19)
by N'x and(3.20)by x and take the difference. Noting that {8:4)the terms involvingv cancel together and using
(3.23) and (2.6}t is easy to obtain

1d _ > 2_ PR B - (1 1
5 g Xl + IVxl™ = /9(51 £2)X /Q()/(Xl) y(x2)x fgbx<01 ﬁ2> (4.9)

and we have to provide a bound for the right-hand side. Let us start by noticing that, by the compactness of the
embedding” C H, it holds

fg (01— 102, 30 = x(0) — mo 4.8)

]2 < o|VV2 4+ co V)2 Vv e V. (4.10)
Furthermore, we have that

Imol < 121721 x0.1 = X021l (4.11)
Let us finally observe that, fav < 3, by (3.17)it follows:

xi € LY°Qr) fori=1,2 (4.12)

To prove this property, let us consider the familysedpaceq-, -); introduced, e.g., ifi19, Definition 1.1, p. 27]
Then, we look for the largest exponensuch that

(L?(0, T; H3(£2)), L>(0, T; V)), C L1(Qr) forsomes € [0, 1].
Actually, we note that

(L*(0, T; H*(£2)), L®(0, T; V), = L¥379(0, T; H**(2))
and that

HZ5(2) c LY@ V(),

thus,
2 6 4 2
_ _2 £ _1p
1-s 2.1 °T5 1,

Then, by monotonicity o and relation (A9), we have

—/9@1—52)2scﬂfﬂ|xnm0|(1+|xl|l’+|xz|")scﬂjg(m+|mo|>|mo|(1+|X1|"+|xz|”>
2 P P -2 4 4
< c,sf9|mo| A+ Ll + xal >+alf9|x| A+ Ll + bl
+ Co f Imol2(L+ x4 + %2l = h + L + L. (4.13)
2

Next, by(3.17)and the continuity of the embeddingc L%(£2) we have

I < o1|| %1% (c + X1l } 0.1y + X201 T 0.7:1)) < €101V XIZ, (4.14)
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furthermore,
t
/ (I1(5) + I3(5)) ds < coy Imol?. (4.15)
0

Indeed, we used that, setting= max{p, 2p — 4}, itis ¢ < 10 by (A9), so that the inequality above is a consequence
of (4.12) Of course, the constang, in (4.15)depends on th&'%-norms ofy; andx2, in addition.
As for they-term, by(4.10), (4.11) and (4.1} is

— /Qmm — Y < LixlulXlu < coplx12 + 02l VxI1? + cllxo1 — x02112. (4.16)
Next,
1 1 1 1 1 1
— b5<<———>=—/bx(———>+bnb/ (———). 4.17
/(2 1 D2 Q %1 U2 o\U1 ( )

Furthermore, by (A1),

1 1 b 2 2
by / (0— - —) = Lo / (@(91) — a(V2) — £(01) + £(92)) < 03I912 + Coglmol
o\01 v co Q
b
L. f (@) — a(92)). (4.18)
(&0)] 2

Now, let us sum togethg#.3) andco times(4.9) and integrate in time between 0 ang 7. Repeatind4.4) and
recalling(4.17) we see that two terms cancel. Moreowertimes the last term on the right-hand side(4f18),
after integration, is controlled by
t
by [ [ @) —a22) < coulmol? + aalLx @ion) — o) (4.19)
2
Then, taking the various; sufficiently small (in particular we need thaio1 < 1/2), we finally deduce
t t
115 (@(@1) — a(@2) D12 +/0 912 + 11X 117 +f0 IVxI? < el o1 — P0.2) + b(xo1 — x02) 12
g 2 2
e [ 1302 +cllxos = xozl? + cimol (4.20)

whence, recalling4.7), a further application of Gronwall’'s lemma readily yielBs26) O

Proof of Theorem 3.7. We operate as before aguation (3.18and get(4.3). Next, with the same notation as
above, we test agaif8.19)by Ny, (3.20)by x, and take the difference, gettiiid.9). Instead of repeating#.13)
now the terms withg are simply treated as follows:

—/ (G1—-8)x = ImOI/ (161 + 1&2D). (4.21)
2 2

Repeating the rest of the procedure as in the previous case, instgad@)fve obtain
t t
11 (¢(91) —a(ﬁz)><r)||2+/0 9% + ||5<<r>||§+/0 IVxI? < el (o1 — D0.2) + b(x01 — x02)112

t
+c /0 %12 + clixo1 — xo2l2 + clmol? + clmol (1&1ll L1co ) + €20l L100;p))- (4.22)

whenceg(3.27)is once more a straightforward consequencglaf) and Gronwall’s lemma. O
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Proof of Lemma3.9. We start by recalling, together with its proof, a simple preliminary result from convex analysis.

Lemma 4.1. LetT > O,let 7 : H — (—o00,400] be a convexl.s.c, and proper functionaland letu <
HY0, T; V)N L%0, T; V), n € L%0, T; V), A = 3J. Let alson(r) € Au(z) for a.e.r € (0, T). Moreover let us
suppose that there exigt, ko > 0 such that

Jw) > ki|v> —kp forallv e H. (4.23)

Then the functiory — J(u(¢)) is absolutely continuous if®, 7] and

t
/ (Qu(r), n(r) dr = Ju@®) — Ju(s)) Vs, t€[0,T]. (4.24)
Proof. To prove the above lemma, let us extend the functighi the spacé’’ by setting, forv € V’,
if H,
Js 1V — (=00, +0o0], J«(v) == J@) v e (4.25)

+o00 otherwise

Itis easy to see that, thanks(#23) the functional7 is still convex, lower semicontinuous, and propendnLet
us now note by Id the identity operator #hand observe that le B : V — V' is the Riesz mapping associated to
the standard scalar product ¥f Then, by assumption we have

(z—u,m) = J@) - Jwu) aein(0,1 (4.26)
for everyz € H. Thus, since) € V a.e. in(0, 7), we immediately deduce that
(z—u,n+ B)s < Ju(z) — Ju(w) aein(0,7) (4.27)

for anyz € V'. Indeed,7, is identically+oo in V' \ H. Sincen + By € L?(0, T; V'), the above relation can be
restated by saying that

n+ Bne A.(u) aein(0, 1), (4.28)

where A, denotes the subdifferential gf, with respect to the scalar product Bf. Then, the assumptions 8,
Lemma 3.3, p. 73fre fulfilled in the spac&’. By that result, 7, (1) = J(u) € AC([0, T]) and formula(4.24)
holds, so concluding the proof aEmma 4.1 O

Let us refer to the (more difficult) conserved case {¢feorem 3.1 We aim to applyjL.emma 4.1to the functional

2

J=Gpy: H— [0, +0c0], Gy = f [% + ,B(v)] ) (4.29)
2

Actually, if we sety := y(x) + b/6, then, observing that € L2(0, T; V') by (3.8), (3.17) and (A3), and recalling

relation(2.4), it is not difficult to show thaly, &, ¢ satisfy

ni=-Nx+ée+9o—9+xedGu(x) aein(0,1), (4.30)

which allows to applf.emma 4. with obvious choices of the other data. This gives the seco(®i®6)and formula
(3.37) It remains to show the continuity property pfn (3.36) Indeed, a g is the sum of two convex functionals
(cf. (4.29), we deduce that both summands are continuous, so that this holds in particular for thesmipg() || 2.
Finally, recalling thaty € C,,(0, T; V) by (3.17)and, e.g.[26, Lemma 3.3, p. 72}this is indeed enough to have
also the first 0{3.36), so that the proof of Lemma 3.9 is now complete.
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Proof of Theorem 3.11. We start dealing with the nonconserved case. First of all, let us show thi&t,38) < X,
it follows that the corresponding soluti@i(s), x(r)) = S(¢) (%o, xo) belongs taX for everys > 0.
With this aim, let us define

a(r) = /ra(s) ds forr e (0, +00) (4.31)
1

and observe that, b{3.1)—(3.3) there exist a constant > 0 and aconvex and non-negativienction &rest :
(0, +00) — R such that

a@r) =vlog™r+ v + Qrest(r)  Vr € (0, +00). (4.32)

Then, using the fact that > 0 a.e. inQ (cf. (3.7)) together withLemma 4.1(applied with the choices of = ¥,
n = a(¥), andJ given by the convex functional induced éhby &), we obtain that the function

t / a (1)) (4.33)
Q

is absolutely continuous in [@]. By the decompositiori4.32), it then follows that log (1) € L(52) for every
t> 0. SinceB(X(t)) e L1() for everyr > 0 by Lemma 3.9this concludes the proof th&tr) mapsX into itself
vt > 0.

Next, let us prove the continuity of the may) : X — X for anyt > 0. This will show thatS(-) is a strongly
continuous semigroup oft, as desired. Assume th@o », x0.,)} C X is a sequence of initial data converging to
(%o, x0) € Xinthe metric ofX. Moreover, let us fix > 0 and namé&,,, x,) (resp.,(9, x)) the solution emanating
from (Y0.,, xo.n) (resp.,(do, xo0)), whose existence and uniqueness are guarante€ddnyrems 3.2 and 3.5hen,
let us notice that we are in the position of applyifigeorem 3.5vith the choices ot 1, x0,1) = (P01, x0.») @nd
(%0.2, x0,2) = (Y0, x0). Thus, by(3.24)we deduce that

(O, xn) = (8, x) stronglyinL*°(0, T; V') x L*°(0, T; H) (4.34)

(and, in particular, the limit of thevholesequence is identified).

However, this is not sufficient to prove the convergencegfr), x, (1)) to (9(¢), x(¢)) in the (stronger) metric of
X. Thus, to proceed, we have to repeat the energy estimat§s, (cemmas 4.1 and 4.2bn the sequenc@,;, x»).
In this way, we get uniform bounds, independentobf the norms appearing if8.7)—(3.10) By the standard
compactness arguments, we also have as a byproduct the corresponding weak erasaa&rgence properties,
holding for the whole sequence thank$4@4) In particular, by standard continuous embedding results, we have that

U, (1) > 9() weaklyinH, xn(t) = x( weaklyinV (4.35)
for all r > 0. We also note that (s¢®, Section 5for the details in an even more general setting), additionally, this
procedure yields
a(®,) — a(®) weaklyinL?(0, T; V), (4.36)
again for the whole sequenegd,). Moreover, a strond.2(Qr)-convergence/x,) — y(x) can be standardly
proved.
To conclude, we use a semicontinuity argument in order to show the convergence with respediiriting

(3.11)at the step, testing it byx (), and integrating over [G], thanks to the integration by parts forma24)
we deduce

t t t
/ 80 (1)) < / &(90.) — / (@2 + / (fa(@)) — b / f Byt (Br), (4.37)
2 2 0 0 0 J2

which holds foreverytimer > 0.
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Next, testing3.12)at the stem by 9, x,,, integrating over [0¢], and using(3.37), for everyr > 0 we get

1 2 R 1 2 n t 2 t t b
SV ) +/ PO () < 51V 0 +/ ﬂ(xo,n)—/ |atxn|H—/ / y(xn)atxn—/ / L
2 2 0 0 J 0 JQ2 Un
(4.38)

Let us sum(4.37)andcg times(4.38)and note that two terms cancel. Then, let us take the lim sup, ds0, of
the resulting relation. Of course, our aim is letting the terms on the right-hand sie80f and (4.38pass to the
limit.

First, let us observe that the three terms related to the initial values pass to the limit since the initial data are
assumed to convergedty (cf. (3.32)). Next, using the energy estimates, the standard compact embedding theorems,
and (Al), (A3) and3.6), we easily derive that

t
lim / [(ﬁa(ﬁn))—co/ V(Xn)atXn_b/ 3tXne(l9n):|
n—o0o Jq k7] 2

= / [(ﬁa(ﬁn —co/ J/(X)azX—b/ azxﬂ(z?)] (4.39)
0 2 2

Furthermore, by semicontinuity of norms with respect to weak convergence,

n—o0

t 1
imsup [ (=101 — coltnll < [ [<lal - o] (4.40)

Then, testing the limit relatio(8.11)by «(®%) and the limit(3.12)by cod, x, Summing, and integrating over,[f}, a
comparison with the result of the preceding computations yields, for everg,

imsup [ [a(0,0) + LIV 0F + b ®)] = [ a0+ DIvx@? +eobixn]. @)
2 2

n—o00

Moreover, we remark that the converse liminf-inequality holds by weak convergetige pf and convexity and
lower semicontinuity ofy, 8, and of the squared modulus. This givés> 0,

1 o 1 N
/ &0, (1), §|Vxn<r>|%,, / B () — / &), EIVX(I)I%, / Bx(@),  (4.42)
2 2 2 22

respectively (and not only the convergence of the sum). Then, using the decompositic@2itand in particular
the convexity ofyresy), we also get

19, (1)1, /Q log™(9,(2)) — |9(1)1%, /Q log~(9(1), (4.43)

still V¢ > 0.
At this point, using4.42), (4.43) and (4.35yve obtain that

%, (1) — (@) stronglyinH, xn(®) = x(©) stronglyinV, (4.44)
but not yet the convergence dty. Actually, it remains to show that
log™ (¥ (1)), B(xa (1)) — log™ (3(1)), B(x (1)) (4.45)

strongly inL1(£2). Both terms are treated with the aid of a simple lemma.
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Lemmad.2. Let{u,} be asequence of non-negative functionsins) converging almost everywhere to a function
u € L1(£2). Moreover let

/ U, —> / u asn /1 oo. (4.46)
I?) 2
Then u, — u strongly inL1(£2).

Proof. Letv, := u, —u,whichtendstoOa.e.if2. Moreover,fg v, — 0byassumption. Sincex < —v, <0Oa.e.
in £2 andu € L1(£2), we can apply Lebesgue’s theoremyfpand conclude thaf, v, — 0. Thus, by comparison,
Jovi — O0and/, |v,| — O, i.e. the assert. O

To apply the lemma, anyway, we need the @econvergence of the whole sequeriég(r)} to 9(zr), but we just
know (by(4.44) that this holds up to the extraction of a subsequétigg. Thus, as afirst step, we only obtain that
log™ (9, (1)) — log™ (9(z)) strongly inL1(£2). (4.47)

However, sincé¢4.44)holds for the whole sequences, then the same is tryd #7) The same argument works also
for the termB(x. (1)), with some small additional complication due to the fact fhiatnot necessarily continuous on
the border of its domain (cf. the discussion leadin(Bt@4)in the proof ofLemma 3.80 overcome this difficulty).
This concludes the proof dtheorem 3.11n the nonconserved case.
The proofin the conserved case is analogous. The main differences are the following: first, when rép88iing
we now have to te€8.19)by N, x,., (3.20)by ; x,, and take the difference. This givis x, ||« whenever we have
had|o; x| before.
Consequently, some further care is required also as we perform the semicontinuity argument. Indeed, the energy
estimates now just yield

xn — x weaklyinH*(0, T; V') N L2(0, T; W) (4.48)
and by Aubin’s lemma this still gives
xn — x  stronglyinL?(0, T; V). (4.49)

However, it is not obvious how to treat the latter two term$4irB9) As for the first, denoting by a primitive of
y, we have

0 0
/ B Yo0)) = / () — / P (om) — / () — / 9(x0) = / Brts YO0), (4.50)
t 2 2 2 2 t

where the chain rule used in the integrations in time is just formal in this setting, but could be made rigorous through
an approximation procedure; moreover, the convergence holds sincé448y) interpolation, and (A3), we know
that

P(xa) — P(x) stronglyinC®([0, T]; H). (4.51)

Finally, let us integrate by parts in time the latter ternf4r89) Thanks to (A10), we have
t 0 0
_b/ / O xnl(0y) = bCoo/ (0r 0, Xn) — bCoo/ Xn (OB, (D) + bcoo/ XO,nﬂO,n g bcoo/ (0r9, x)
0 J§2 t 2 2 t

t
—bee / x()9(1) + bes / xovo =b / f 3 xL(9), (4.52)
2 2 0 J
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where we have use@.49)and thaty, — ¢ weakly in H1(0, T; V'), which follows from(3.7). Then, the rest of
the proof works exactly as in the nonconserved case. O
5. Dissipativity

Proof of Theorem 3.13. The proof is reached via a number of a priori estimates. Let us detail them.

Estimate 1. Test(3.11)by —1/%, (3.12) by x, and take the sum. Usin@.3) and noting that two terms cancel
together, the procedure gives

2

d oa s 1+ ¢! Vl 1 , d IVx2 .
E/Q_ g +C0A2 5 +COn0ﬁﬁ+|Xz|H+a‘£Z 2 +ﬂ(X)
209 1
< no/FT—<ﬁ5>—Ly(x)+Xz- (5.1)

Next, let us treat the three terms on the right-hand side: first, by (A1), and continuity of the trace operator
from V to L2(I)

2

£(9) 1
WO/FT =05 5 + Coss (5.2)
next,
1 2
~(#3) o8 |3 + sz 63
finally,
—LV(X)Xt <orlxlf + G7|IX||§4(Q) + Co7- (5.4)

Putting the above computations together and choasings, o7 sufficiently small, we readily have

Ef [—Io 19+|VX|2+A( )}4- HE
dr I?) 9 2 plx “s 4

where the constang > 0 also depends o, o, and the constant,, . ., also depends orv, c;, no, f, L, of
course.

2
+ |Xl‘|§-]:| = U7||X||i4(_(2) + Cos,06,075 (55)

Estimate 2. Test now(3.12)by y, getting

d [ ¥ 2 bx
E/Q?'nglv)d +/Q$x§—fgy(x)x—/97~ (5.6)

By (A3), the right-hand side is simply treated this way:

2
+ Cog- (5.7)
H

2

—/ y(x)x—/ PX < ogllxlld ey + s
2 o
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Estimate 3. Finally, test(3.11)by . By (3.2), this gives

2
5/ ﬁ——l—coo/ |V19|2+no/ a(®)Y < (f,ﬂ)—/ by (5.8)
dr Jp 2 2 r 2

Let us now note that, by (Al),

()P = (@®) — (D)@ — 1) +a®) > coo(® — D+ a() > Fco®® — coo + a(¥). (5.9)

Furthermore, it is clear that
co 2 1

la(9)] = (—5 + E(ﬂ)( < 369% + 09— + Cog. (5.10)
Next, also on account @8.6), we have

9 = [ bt < 1091+ gl + gl 12 (5.12)
Thus, takingrg, 019 sufficiently small (a good choice farig is ¢~ /8), (5.8) becomes

d [ »? 1

E/Q? T eald)? < cmnxtniwgfgﬁ + o oro (5.12)

where the constanry > 0 on the left-hand side also dependsm@ncio, ¢, 1o, While the constants, ,, on the
right-hand side also depends af) ¢, L, and on thé/’-norm of f, of course.

Conclusion of theproof. Letus now note that, by (A11) (cf. al¢8.39)), there exist constants, xs > 0 such that
Ex > ks[BOO + x*+ x7] — ke aeing. (5.13)

Thus, let us sum togeth€b.5), (5.6) and (5.12nultiplied by a constant¢ > 0 to be chosen later. Usin.7),
(5.13) and the continuity of the embeddiifj c V', this procedure gives

d /Io PR ||2+/B<)+ !
ar 5 g >V T 51X o X |y

2
+ (07 + 08| X114 ) + ECorolxalfy + cs, (5.14)

2
+ m@} + x5 [/Q B0 + Xl Eao + |x|%}

+VxI% + ecall 9% < (08 + £00) 5

where the constang collects all the constants introduced on the right-hand sides of the computations above and
depends on the various's.

Then, choosing
1 1 . c3
o7+o0g< —, 08+ €09 < —, g<miny——, 1, (5.15)
K5 c3 o

Coy

all the terms on the right-hand side are controlled by the corresponding terms on the left-hand side. Furthermore, it
is clear that there existg > 0, also depending o1 such that

1 2
[P —f log® + 2|92 | . (5.16)
9 5 2

Next, let us observe that

—logr + 8%(?2) >log™ r+ %8}’2 —cs VYre(0,+00) (5.17)
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and for some constant > 0 not depending on. We can now define
£ 1 A
P (¥, x) = —/ log? + Elﬁlﬁr + EIIXII2 +f B(X) + ¢ (5.18)
2 2
and note that, by5.17) &, is a non-negative functional. More precisely, we have that
_ & 1 A
@.0.0 = [ 10”0+ 5108+ 50+ [ Boo. (5.19)
2 4 2 2

Now, also by(5.16) (5.14)yields, for some:7, cg, cg > 0 depending om and on the other constants,
2

dr

d 1
—®.(9, X) + 7P (¥, 1) + cs [nxn‘p@ + HE + 1012 + w%} < co. (5.20)

Thus, using Gronwall’s lemma in the differential form (cf., e[@0, Lemma 2.5}, we obtain that for every > 0
it holds
€9
P (F(1), x(1)) < Pe(Do, x0) EXP(—C71) + o (5.21)

Let us finally show that this estimate entails the existence of Bgdtounded in the metrid¢y, which absorbsall
metric bounded set in a finite timeTy (cf. (2.15). As a first step, we note that a skt of X'is bounded with
respect taly if and only if

ARM > 0 :dx((u,v), (1,0) < Ry V(u,v) € M. (5.22)
Thus, we can define our candidate Bgtas

Bo = {(u,v) € X:dx((u,v), (1,0)) < Rp,}, (5.23)
where the radiu®p, is introduced by

Rp, == 1&%9 +2|21+1+ g (5.24)

The absorbing character 8f is provided by the following couple of lemmas.

Lemmab.1. The set

Bo:z {(I,t,v) cX: @g(u, U) < @}
c7

is contained intd3g.

Proof. Let (u, v) € Bo. Then, since < 1 (cf. (5.15) and by(5.17)

2C9 & 2 1 2 ~
— > ®:(u,v) = | —logu + Sluly + SlvlI“+ [ B +e.
c7 0 2 2 0

— € 2 1 5 %
> log M+Z|”|H+§||U|| + [ B)
2 2
_ e 42 € } 2 2
z/ﬂlog u+ glu— 1% = 2121+ S ol +/Qﬂ(v)
>/Io_ P T Ay BT 1+/3()
e gutghTinTgTy 2!
1

> gd/y((u, ). (1,0)) — %|(2| - % -5 O (5.25)
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Lemmab5.2. Let M be metric bounded i, i.e. let it satisfy(5.22)for someR v, > 0. Then there existsky( > 0
depending only oR u, ¢, ¢, and £2, and such that

®.(u,v) < Rym Vu,v) € M. (5.26)

Proof. By (5.18) and (5.15)for all (1, v) € M we have

e 1 A
@utuv) = [ togu -+ Sluy+ 510l + [ pw+co < [ llog”u ~1og 1l + elu — 1} + el2
2 2 2

+ %nvn2 + /Q B) + ce < dx((u,v), (1,0) + gdx((lh v), (1 0)* +£|82| + ce. (5.27)

Thus, the assert follows with the choice of:
Rt = Rm + SR%, + €192 + ce. (5.28)
O

It is now clear that, ag\1 satisfieg5.22) it follows from Lemma 5.2and(5.21)that:

1 R 2
Vi = 10g T s w) < 52

Y(u, v) € M. (5.29)
The thesis offheorem 3.13s now a straightforward consequencg®23)andLemma 5.1 O

Corollary 5.3. There exists gmonotone increasingunctiong : R™ — R™ such thatif M is dy-bounded inX
(i.e. it fulfills (5.22), then

2
oot 19172y, + 160132 < @(RA) (5.30)
V)

4
111743y + H 9
for all (9, x) = S@)(Po, xo) and for all (¥q, xo0) € M.

Proof. Take anyr > 0 and integrat€5.20)in time between andr + 1. Then, to controt (9(z), x(r)), useLemma
5.2 and relation(5.21) Finally, pass to the sup as/aries inR™ and recall the definitioii2.9) of the norms of7”
type. O

Proof of Theorem 3.14. The outline of the procedure is similar to the nonconserved case. Hence, let us just sketch
the differences. In the sequely will denote any positive constant additionally dependingqon

In Estimate 1, instead of testir{g.12)by x;, we have to teq{3.19)by Ny;, (3.20)by x;, and take the difference.
Then, we can proceed as before, by substituting dayorm of x, with the V/ one. However, we have to modify
(5.4)as (cf.(4.50) getting

d
— (x> (X)) = —d—f y(x@®). (5.31)
rJo

Then,(5.5)takes now the form

[ [Fo00+ T2 4 b+ 900] 4o | 2
a /o g 5 BOO + v(x SE

2
+ ||Xt||§:| <c, (5.32)

where of course—and the same for the sequel—the various constants need not assume the same values as before
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In the passage corresponding to Estimate 2, w& set x — x; and tes{3.19)by Ny, (3.20)by x, and take the
difference. Integrating in time, we have

d ||x]12 } bx
d—”X”* +|Vx|§1+/ %xi/ éxrz—/ V(X)X—f X (5.33)
r 2 o Q Q 2

and we have to give a bound for the right-hand side. First of all, it is easy to see that, for somedne®d)

2

_ bx _ 1
— [ vQ0x — 5 = cn,og(1+ [X|5) + 08 5l
2 2 H
To deal with the first term on the right-hand sidg533) let us first assume th@(B) = R. Then, it is easy to see
that

fg Exe < on /Q fl<ents /9 £x. (5.34)

On the other hand, ib(8) is bounded (we do not deal, just in order to avoid technicalities, with the caseMfn

is a half line), then inequalitgs.34)does no longer hold and we need two further estimates, provided by a suitable
modification of an argument devised by Kenmochi et a[1#5] and also described, e.g., [, Section 4] Firstly,

we have to tesf3.19)by V(€ — £p), (3.20)by £ — &g, and take the difference. Using the monotonicity3p{A3),
and(2.4), it is not difficult to infer

) 1/?
& —£al? < oq <1+ 1X1% + ‘5 + ||xf||§) : (5.35)

Then, let us choosa1, my € int D(B) (depending om), with my < n1, m2 > n2 (cf. (3.31), and seb = §(n) :=
min{n1 — m1, mo — n2}. Sincexgo € [n1, n2], we can proceed as |8, third estimatepnd get

3/ €] < cm +/ & —&)(x — x2)- (5.36)
2 2
SinceD(p) is bounded ang satisfieq3.21) we deduce that

/Qm <cn (1+/Q|s—sm). (5.37)

Consequently, thanks {6.35), it follows that:

2
612, < 2 — Eol% + |El%) < ¢ [@—sm% + e <1+/Q|s—sg|> }

2

B 1
< eql+ & —£0l%] < on [1+ X% + ’5 + ||xt||§} : (5.38)

Finally, Estimate 3 is repeated exactly as before and we get §gdi) Thus, we can put all the computations
above together, starting from the case wiiB) is not bounded. Then, froif.32)—(5.34) and (5.12)sing again
(5.13) and takinge as before, it follows that:



E. Rocca, G. Schimperna/Physica D 192 (2004) 279-307 303
d & 2 1 -2 - A
— = [ logd+ 1Py + SlxlI“+ [ BGO+ | v00
dr Q 2 2 Q Q
1 2
+c3 H 3

< cn + cmoplX1% + (08 + 00)

K5 A
+ ||x,||§} + 5 [/ BOO + Xl agg) + |x|§{} + 1Vl + ecall 9117
2
1 2
S + ecopoll X112, (5.39)
H

where we used the (equivalent) norm @rgiven by| - || = |V - |2+ || - |2. Then, taking agaiac,,, < c3/2 and
og, ag sufficiently small, and noting that

cnoel XI5 < emop + G661 X172 (5.40)

we see that all the terms on the right-hand side are controlled. Moreover, we observe that, by (A3) and (Al11), there
existsc > 0 such that

B(r) +9(r) = 3B(x) —c  Vr e D(B. (5.41)
This yields that, for a (new) choice of > 0, the (new) functional
3 1 _ A N
Pe(D, ) = —f log® + 1915 + —||x||2+/ B0 +f PO + ce (5.42)
2 2 2 2 2
is non-negative. More precisely, we choegeo that
- g .o 1 _ 5 1
D:(0, x) = [ log” ¥+ |y + ST+ 5 | BOO- (5.43)
o 4 2 2 /o

Now, the proof of the existence of&-bounded absorbing sBb v can be completed as in the nonconserved case
(of course, the values of some constants will be different and they will depend, in additigj, Bhis concludes
the case of unbounded(s).

If D(B) is bounded, instead, we have to come bacbt83)and note that, by monotonicity ¢,

ex=E— )i+ P2 = BPxa)x (5.44)
and, of course,
/g 1B2(x) %l < eqllXlL1co)-

Thus the terms witlg in (5.33)are controlled but do no longer provide a contribution in the estimate. Thus, as we
write the relation corresponding 6.39), we now also have to add the contribution®f38)times a (smallx > 0.
We obtain (for a news > 0)
12
+ ||xf||§}

d p—
9

——/Ioﬁ—kfﬁz—k}"z—#/A()—i—/A()—i—
4 5 g 2| I 2||X|| Qﬁx QVX c3

_ _ 1
+lglG + IV X% + ecall®1® < on + (eqos + XI5 + ol Xl 11 0) + (08 + 209 + ey ‘5

2
H

+(eCoy0 + 1eq 12, (5.45)
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Wherec$I is precisely the constary, appearing in5.38) Now, the termB(x) appears on the left-hand side just
under time derivative. However, working similarly as in the last part of the proéfroposition 3.15nd using
(A11), it is easy to see that

/Qsz >c (fg BOO + Xl ag) + |x|§,> ,

so that we can conclude the estimate by choosiagdu sufficiently small. The rest of the procedure is now as in
the previous case. This concludes the proof of Lemma 3.14. O

Again, we also have an additional property, whose proof is analogous as before.

Corollary 5.4. There exists gmonotone increasingunctiongy : R*T — R* such thatif My is dx-bounded in
Xy (i.e. it fulfills (5.22)), then

2
% a0 + H—
THLA) 2

+ 1912, + x5z < 90 (Rvtyy) (5.46)
V)

forall (9, x) = S(t) (o, xo) and for all (o, x0) € M.

6. Existence of the attractor

Proof of Theorem 3.16. Let us now perform some further estimates on the solution of sy&eit)—(3.14) We

notice that some of the passages below might be formal in the present framework; indeed, we shall work in a
regularity setting which is stronger with respect to the prope(8es)—(3.10) However, the estimates might be
made rigorous by effecting a regularization and then passing to the limit; one possibility could be to regularize
(3.11)—(3.13p\nd replace it, e.g., with

1, (¥) + 0,0 + by) + J(a(®) = f inV'ae.in(0, D, (6.1)

b .
X+ Bx+ B.(0) +y(x) = -5 aein or, (6.2)

wherep, is the Yosida approximation ¢f and the regularization parametet 0 is intended to go to the limit.
It is easy to show that the solutions of such a regularized system gain (a priori just 8&s—which is enough,
indeed—unless the initial data are regularized too) all the regularity which is required to make the estimates rigorous.
However, since this procedure is rather standard, we omit the details and go on in a formal way.

Our task is showing thai(r) admits an absorbing set which is bounded with respect to the metiawnd, more
precisely, fulfills the conditions in the statementRybposition 3.15With this aim, we first redefine the absorbing
setBp provided byTheorem 3.1y setting

Co = _JS®Bo. (6.3)

>0

It is a standard matter to show th&j is still an absorbing set faf(r), which is bounded iriy by an absolute
constantRc, (cf. (5.24). Furthermore, by constructidfy is positively invariant, i.eS()Co C Co for all ¢ > 0.

First step Let us assign an initial datuii®g, xo) € Co and let the system evolve from this datum. Let us test
(3.11) by the time derivative od(1%). Then, let us differentiat€8.12)in time and test the result ly x;. Taking the
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sum, noting that two terms cancel, and using the monotonicigyto§ether with propertie@.2) and (3.3ye infer

o o2, €0 > d 2,9 co » _ d
10l + D2audlog ) + @ + o (Fhulh) + ol Vaulh = 2 (fa)
—00/ V’(x)x,z—b/ ey (6.4)
2 2

and again we have to control the right-hand side. First, we notice that the latter two terms, owing to (A1) and (A3),
are bounded as follows:

_CO/QV/(X)X? - b/_qe/(??)l?z)(z = c%omﬁ{ +clxil%- (6.5)
Next, we define the functional

(o, ) = la@IF + Flulh = (£a®) + . (6.6)
where we have sét( f) ;= ||f||i,/2 (with obvious notation), so that

W, ) = zeolxly + 3la@F = 0. 6.7)
Thus, relation(6.4) can be clearly rewritten as

%wm X0 + c1oll9:1% + 19:010g NN% + 1Vl F] < cin@ + 1 l3) (6.8)
forall + € (0, +00) and for some1g, c11 > 0 also depending ofi. Then, the uniform Gronwall’s lemma yields

Y +1), xt+1D) < ca@+ lxillzg) + 1¥Iag, V=0, (6.9)
which is a bounded quantity since

Wlng) < clla@llzezq, + %COIIlelqe(H) + 1 fllx,7 = co(Rey) + ”f”ij (6.10)

by Corollary 5.3 (A1), (A5), and(3.6).
Finally, by (A1),(3.2) and (6.7)this clearly entails

2

1
+ X014 < c(Rey) V= 1. (6.11)

2 —
9@~ + H 50

Second stepThe forthcoming procedure can be applied for gnput is needed only aB(f) is not closed, in
order to show(3.42)(with x(z) in place ofv,). Let us tes(3.12)by Bx + &. By monotonicity ofg, it is then clear

that
2 2 2 2 1 2
IED% + 1Bx0)% < e[ 14 1x@) +|xt<t>|H+’— : (6.12)
90 |y
Thus, sincgdo, xo) € Co, by (6.11) it follows that:
€015 + I xDN1% < c(Re,) forae.r> 1. (6.13)

We actually remark that the bound above holdsdirr > 1 as far as théV-norm of x is concerned. Indeed,
(6.13) together with(3.9), yields thaty € C,([0, +00); W). This, a priori, is not true fo which is not known to
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be time-continuous with values in any space; indeed, the procedure just§ields® (0, +oo; H). However, we
claim that this entails that there exisi&¢,) > 0 such that

1B2(x(0)1%; < c(Rey) forallr > 1. (6.14)

Actually, let us prove the above for a generie [1, +00). Approximater by a sequencg,} C [1, +00), t, — T,
of times such that the inequality {6.14)holds forr = r,,. Let us set

Xns En 12— R, Xn(x) = X(-xa ), En(x) = E(x’ ).
Then, as
x € HY0, +00; V') N L®(1, +00; W) C C(2 x [1, +00)),

we have in particular that, — x(7) uniformly in £2. Moreover, we can assume tlgte 8(x,) a.e. ing2.
Thus, sinces® is a monotone function, it is easy to see that

(ke )| < liminf |5,(x)] ae.in, (6.15)

whenceg(6.14) written fort = 7, follows by squaring, integrating ove?, and applying Fatou’s lemma.

This actually concludes the proof of Theorem 3.16; indeed)(#) is closed, then, by6.11)and the first case
of Proposition 3.15we easily see that conditid®.18)holds. Otherwise, the same is true(Byl4)and the second
case ofProposition 3.15 O

Proof of Theorem 3.17. The procedure is very similar as before; thus, we just outline the differences. The compu-
tation in Step 1 is modified as in the previous cases and this leads to replace

1 2 g 1 2
scolx:ly  with Scoll x5

in the left-hand side of6.4) as well as in the definition of (cf. (6.6) and (6.7) Moreover, we have to notice that
the latter term in(6.5), by the compact immersiovi ¢ H (cf. (4.10), has to be controlled this way

2 1 2 2
clxely = zcolVixely + clixells-

Then, Step 1 is completed as before if we substituteHhsorms ofy, with V’-norms in(6.8)—(6.10) and we use
Corollary 5.4instead ofCorollary 5.3 Thus, in place o0f6.11) we now get

12 )
50 + x5 = c(Rep) V=1, (6.16)
where the absorbing s€g is now intended to depend also qnof course.

We finally have to modify Step 2. For simplicity, we just consider the case vihgh is open and bounded.
Then, as we te€8.20)by By, we can proceed similarly as before and get the inequality far(6.13) To bound
the norm oft(r), we have to repeat precisely the argumeritléi already used in the previous section; thus we get
again(5.38)at the timer > 1. On account of6.16) this gives the second bound(.13) a priori just fora.e.t > 1.
However, proceeding as before we can show affiv)for all # > 1 and conclude the proof. O

19(0) 1% + H
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