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Abstract. We give in this Note a construction of exponential attractors for a class of operators
in Banach spaces (and not in Hilbert spaces only as it is the case for the classical
constructions). We then apply this result to a reaction-diffusion system inR3.  2000
Académie des sciences/Éditions scientifiques et médicales Elsevier SAS

Attracteurs exponentiels pour un système de réaction-diffusion dansR3

Résumé. Nous donnons dans cette Note une construction d’attracteurs exponentiels pour une classe
d’opérateurs dans des espaces de Banach(et non dans des espaces de Hilbert uniquement
comme c’est le cas pour les constructions usuelles). Puis, nous appliquons ce résultat
à un système de réaction-diffusion dansR3.  2000 Académie des sciences/Éditions
scientifiques et médicales Elsevier SAS

Version française abrégée

Nous nous intéressons dans cette Note à l’existence d’attracteurs exponentiels (voir la définition ci-après)
pour des équations de réaction-diffusion dansR3 de la forme (1).

La difficulté essentielle est qu’ici nous ne pouvons pas utiliser les constructions classiques (voir [1]
et [3]) ; la raison étant que les espaces dans lesquels nous travaillons (définis dans la section 1) n’ont pas de
structure hilbertienne. En effet, les constructions usuelles font appel de manière essentielle à des projecteurs
orthogonaux de rang fini.

Afin de contourner cette difficulté, nous donnons dans cette Note (voir proposition 1 ci-dessous) une
construction d’attracteurs exponentiels, valable dans des espaces de Banach, qui généralise celle de [3]
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pour des opérateurs s’écrivant comme somme d’une contraction et d’un opérateur compact (dans un sens
précisé ci-dessous). On en déduit alors l’existence d’un attracteur exponentiel pour (1).

Introduction

Our aim in this Note is to prove the existence of exponential attractors for reaction-diffusion equations
in R3 of the form (1) below.

In [4], the authors obtained the existence of finite-dimensional attractors for (1) under very restrictive
conditions on the nonlinear term. Then, in [6], the authors were able to weaken these assumptions. However,
they obtained the finite-dimensionality of the attractors inL2(R3), whereas the associated semigroup was
constructed on functions that are bounded as|x| → ∞ (seebelow for the exact definition of the phase
space). Here, by constructing an exponential attractor, we are able to prove the finite-dimensionality of the
global attractor in the phase space. Such spaces of bounded functions play a crucial role for problem (1).
Indeed, we have the existence of the finite-dimensional global attractor in these spaces without any decay
assumption on the initial data. Of course, we need a decay condition on the forcing term, but this decay can
be arbitrarily slow (seeSection 1 below), and, without this decay assumption, the attractor has generally
infinite dimension (see[6] and [7];seealso Remark 3 below). Thus, these spaces give here the sharp border
between the finite and the infinite-dimensionality of the global attractor.

Now, the study of exponential attractors has also an interest on its own. Indeed, compared to an
exponential attractor, the global attractor presents two defaults for practical purposes. Indeed, it is very
sensitive to perturbations and the rate of attraction of the trajectories may be small. An exponential
attractor however, as its name indicates, attracts exponentially the trajectories and will thus be more stable.
Furthermore, in some situations, the global attractor can be very simple (say, reduced to one point) and thus
fails to capture interesting transcient behaviors. Again, in such situations, an exponential attractor could be
a more suitable object.

In [1], the authors proposed a construction of exponential attractors for equations in unbounded domains
(seealso [4]). However, as it is the case for the usual construction of [3], it is only valid in Hilbert spaces;
indeed, it makes an essential use of orthogonal projectors with finite rank. This construction will thus not
apply to (1) (we shall see below that the phase space for our problem is not a Hilbert space).

We propose, for maps that can be decomposed into the sum of a contraction and of a compact (in a sense
precised below) map, a construction that is not based on projectors and that is therefore valid in Banach
spaces. As an application, we obtain the existence of an exponential attractor for (1) in the phase space.

We only give in this Note the proof of our main result (Proposition 1 below). Indications on the proofs
of some results may be found in [6]. Furthermore, all the details will appear in [5].

1. Setting of the problem

This Note is devoted to the study of the long time behavior of the solutions of the following problem:{
∂tu= ∆xu− f(u,∇xu)− λ0u+ g(t), x ∈R3,

u|t=τ = uτ .
(1)

Here, u = (u1, . . . , uk) is an unknown vector valued function,f = (f1, . . . , fk) and g(t) = g(t, x) =
(g1(t, x), . . . , gk(t, x)) are given functions,∆x is the Laplacian with respect to the variablesx =
(x1, x2, x3) andλ0 is a fixed strictly positive number.
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We assume that the nonlinear termf satisfies the conditions:
1. f ∈C1(Rk ×R3k,Rk);

2. f(v, p) · v > 0;

3. |f(v, p)|6 |v|Q(|v|)(1 + |p|q), q < 2;

(2)

for everyv ∈ Rk, p ∈ R3k and for some monotonous functionQ. (Here and below, we denote byu · v the
inner product inRk.)

In order to introduce the phase space for our problem and to impose the assumptions on the right-hand
sideg, we give the following definition (see[6]):

DEFINITION 1. – LetBRx0
be an openR-ball in R3 centered atx0 and let as usualW`,p(BRx0

) denote
the Sobolev space of the functions onBRx0

whose derivatives up to the order` belong to Lp(BRx0
)

(‖u,BRx0
‖`,p ≡ ‖u‖W`,p(BRx0

)). For everỳ > 0 and16 p6∞, we define the space

W`,p
b (R3)≡

{
u ∈D′

(
R3
)

: ‖u‖b,`,p = sup
x0∈R3

∥∥u,B1
x0

∥∥
`,p
<∞

}
(roughly speaking, the spaceW`,p

b (R3) consists of functions whose derivatives up to the order` are bounded
as|x| →∞) and the space

W`,p
b,0

(
R3
)
≡
{
u ∈W`,p

b (R3) : lim
|x0|→∞

∥∥u,B1
x0

∥∥
`,p

= 0
}
.

In other words, the functions inW`,p
b,0(R3) decay as|x| →∞. We define similarly the spacesLpb(R3) and

Lpb,0(R3) (corresponding tò = 0).

We assume that the right-hand sideg ∈ C1
b(R,L2

b,0(R3)) and is quasiperiodic with respect tot with `
independent frequencies, i.e., there exist a function

G ∈C1
(
T`,L2

b,0(R3)
)
,

T` being thè -dimensional torus, rationally independent frequenciesα= (α1, . . . , α`) and the initial phase
φ0 = (φ1

0, . . . , φ
`
0) ∈ T` such that

g(t, x) =G(φ0 +αt,x).

The phase space for problem (1) will be the spaceΦ = W2−δ,2
b (R3), whereδ > 0 is chosen such that

δ <min{1/2,1/q− 1/2} and the exponentq is the same as in (2).

Remark1. – Since the exponentδ in the definition of the phase space is small enough, one can easily
verify, using the third assumption of (2) and the Sobolev embedding theorems, thatf(v,∇xv) ∈ L2

b(R3) if
v ∈Φ and consequently equation (1) can be understood in the sense of distributions.

Proceeding as in [6], we have the following result:

THEOREM 1. –Let the above assumptions hold. Then, problem(1) has a unique solutionu(t) ∈ Φ, for
everyuτ ∈Φ. Moreover, the following estimate holds:∥∥u(t)

∥∥
Φ
6Q1

(
‖uτ‖Φ

)
e−ε(t−τ) +Q1

(
‖G‖C1(T`,L2

b
(R3))

)
,

whereε > 0 andQ1 is some monotonous function depending only on the equation.
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COROLLARY 1. –Theorem1 implies that the(family of) operators(called the process associated with
the equation):

Ug(t, τ) : Φ−→Φ, u(t) = Ug(t, τ)uτ ,

are well defined and are bounded ast− τ →∞.

2. Existence of an exponential attractor

In order to study the long time behavior of the nonautonomous equation (1), we actually consider,
following [2], the family of equations{

∂tu= ∆xu− f(u,∇xu)− λ0u+ ξ(t),

u|t=τ = uτ ,
(3)

for all ξ ∈H(g), where the hullH(g) is defined as follows:

H(g) =
{
G(φ+ αt,x) : φ ∈ T`

}
.

Since the functionsξ ∈ H(g) can be parametrized by the pointsφ of the `-dimensional torus, we shall
denote byUφ(t, τ) the family of processes associated with (3) (instead ofUξ(t, τ), with ξ(t) =G(φ+αt)).

It is known (seefor instance [2]) that the family of processes{Uφ(t, τ), φ ∈ T`} can be extended to a
semigroupSt acting onΦ×T` by formula

St(v,φ)≡
(
Uφ(t,0)v,Ttφ

)
, Ttφ≡ φ+αt. (4)

Thus, instead of studying the long time behavior of the single equation (1), we shall actually study the long
time behavior of the trajectories of the semigroupSt : Φ×T`→Φ×T`.

We recall that the compact setA⊂Φ×T` is called the global attractor for the semigroupSt on Φ×T`
if it is invariant bySt, i.e.,

StA=A, for t> 0, (5)

and it attracts the bounded subsets ofΦ×T` ast→∞, i.e., for everyB ⊂Φ×T` bounded

lim
t→∞

distΦ×T`{StB, A}= 0,

wheredistV denotes the Hausdorff semi-distance inV .

THEOREM 2. –Let the above assumptions hold. Then, the semigroupSt defined by(4) possesses the
global attractorA on Φ×T`. Moreover, this attractor has finite fractal dimension inΦ×T`:

dimF

(
A,Φ×T`

)
<∞.

The existence of the global attractor is obtained in [6]. Now, the fact that is has finite fractal dimension
in the topology ofΦ×T` will be a consequence of the existence of an exponential attractor below (we note
however that this last property can be proved directly,see[5] and [7]).

Remark2. – We recall that we require thatg(t) ∈ L2
b,0(R3), for everyt > 0. It is worth emphasizing

here thatL2(R3) ⊂ L2
b,0(R3). Consequently, right-hand sidesg belonging toL2(R3) are also admissible.

We also note thatL2
b,0(R3) is larger thanL2(R3), sincearbitrary decay rates as|x| →∞ are allowed. For

example, the functiong(x) = 1/ ln(|x|2 + 2) belongs toL2
b,0(R3), but evidentlyg /∈ L2(R3).

Remark3. – As noted in the introduction, such decay rates of the right-hand sideg as |x| → ∞
(g(t) ∈ L2

b,0(R3)) is essential to prove the finite-dimensionality of the global attractor. Indeed, even in

716



Exponential attractors

the autonomous caseg(t) = g, the global attractor may have infinite fractal dimension ifg ∈ L2
b(R3) but

g /∈ L2
b,0(R3) (seefor instance [6] or [7]).

We first recall that a compact setM⊂Φ×T` is called an exponential attractor for the semigroupSt on
Φ×T` if it is semi-invariant bySt, i.e.,

StM⊂M, for t> 0, (6)

it attractsexponentiallythe bounded subsets ofΦ×T`, i.e., there exists a constantµ > 0 such that for every
B ⊂Φ×T` bounded

distΦ×T`{StB, M}6C
(
‖B‖Φ×T`

)
e−µt,

and it has finite fractal dimension inΦ×T`, i.e.,dimF(M,Φ×T`)<∞.

Remark4. – We note that since we lose the invariance (assumption (6) instead of (5)), then, contrarily to
the global attractor, an exponential attractor is not necessarily unique. However, we always haveA⊂M.

THEOREM 3. –Let the above assumptions hold. Then, the semigroupSt defined by(4) possesses an
exponential attractorM on Φ×T`.

The proof of this theorem is based on the following sufficient conditions for the existence of an
exponential attractor for maps inBanachspaces which generalize those given in [1] and [3] that are valid
in Hilbert spaces only:

PROPOSITION 1. –LetH andH1 be two Banach spaces such thatH1 is compactly embedded inH . Let
alsoX be a bounded subset ofH . We consider a nonlinear mapL :X→X such thatL can be decomposed
into a sum of two maps

L= L0 +K, L0 :X −→H, K :X −→H,

whereL0 is a contraction, i.e.,∥∥L0(x1)−L0(x2)
∥∥
H
6 α‖x1 − x2‖H , ∀x1, x2 ∈X, with α < 1/2, (7)

andK satisfies the condition∥∥K(x1)−K(x2)
∥∥
H1
6C‖x1 − x2‖H , ∀x1, x2 ∈X. (8)

Then, the mapL :X→X possesses an exponential attractor.

Sketch of the proof. –Let us fix θ > 0 such that2(α + θ) < 1. SinceX is bounded, there exists a ball
B(R,x0,H) of radiusR centered atx0 ∈X in H which containsX . We setE0 = V0 = {x0}. It follows
from (8) that theH1-ball B(CR,K(x0),H1) covers the imageK(X). We now cover this ball by a finite
number ofθR balls inH with centersyi (it is possible to do so because the embeddingH1 ⊂H is compact).
Moreover, the minimal number of balls in this covering can be estimated as follows:

NθR
(
B(CR,K(x0),H1),H

)
=NθR

(
B(CR,0,H1),H

)
=Nθ/C

(
B(1,0,H1),H

)
≡N(θ).

(It is essential for us that this number be independent ofR.) Thus, we have constructed aθR-covering
of K(X). It follows from assumption (7) that the family of balls with centersyi + L0(x0) and with
radius(α + θ)R coversL(X). Now, the centers of the balls in this covering may go out ofL(X) and
even out ofX . To avoid this problem, we increase the radius twice and construct the new2(α + θ)-
covering{B(2(α + θ)R,xi1,H)}, i = 1, . . . ,N(θ), of L(X) so thatxi1 ∈ L(X). We then setV1 = {xi1,
i= 1, . . . ,N(θ)}.
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Applying the above procedure to every ball in this new covering, we obtain the(2(α+ θ))2R-covering
of L2(X) with N(θ)2 balls. We denote byV2 the set of their centers. Repeating this procedure, we finally
construct a sequence of setsVk ⊂ Lk(X) such that

distH
(
Lk(X), Vk

)
6R

(
2(α+ θ)

)k
and #Vk 6N(θ)k. (9)

To obtain the invariance, we now introduce the sequence of setsEk = L(Ek−1) ∪ Vk and we set

E∞ =

∞⋃
k=1

Ek; M= [E∞]H ,

where [ · ]H denotes the closure inH . Let us verify thatM is an exponential attractor forL on X .
Indeed, the invariance follows immediately from our construction. SinceVk ⊂M and2(α+ θ) < 1, the
exponential attraction property is a consequence of (9). Thus, there remains to estimate the dimension of
M or, equivalently, that ofE∞.

We note thatL(X)⊂X and that⋃
k>n

Ek ⊂ Ln(X)⊂
⋃
v∈Vn

B
(
v,R

(
2(θ+ α)

)n
,H
)
.

We fix ε > 0 and we choose the smallest integern such thatR(2(α+ θ))n 6 ε. Then

Nε(E∞,H)6Nε
( ⋃
k6n

Ek

)
+Nε

( ⋃
k>n

Ek

)
6
∑
k6n

#Ek + #Vn+1 6C2N(θ)n.

Here, we have used the fact that#Ek 6C1N(θ)n, which can be easily deduced from the recurrent formula
#En 6 #En−1 + N(θ)n. Thus,dimF(X,H) 6 log2N(θ)/ log2(1/(2(θ + α))), and Proposition 1 is
proved. 2

In order to have compactness when proving Theorem 3, we obtain, after having introduced the proper
decomposition (similar in spirit to that considered in [4]), estimates in weighted Sobolev spaces. In
particular, we use the compactness of the injectionW2−δ/2,2(R3, ϕdx) ⊂ Φ for proper weightsϕ. The
details will appear in [5].

Remark5. – Analogous sufficient conditions are given in [7] for the existence of the global attractor.
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