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Abstract. We give in this Note a construction of exponential attractors for a class of operators
in Banach spaces (and not in Hilbert spaces only as it is the case for the classical
constructions). We then apply this result to a reaction-diffusion syste®®ind 2000
Académie des sciences/Editions scientifiques et médicales Elsevier SAS

Attracteurs exponentiels pour un systéme de réaction-diffusion d&ds

Résumé. Nous donnons dans cette Note une construction d’attracteurs exponentiels pour une classe
d’opérateurs dans des espaces de Ban@timon dans des espaces de Hilbert uniguement
comme c’est le cas pour les constructions usugllBsiis, nous appliquons ce résultat
a un systéme de réaction-diffusion daRS. O 2000 Académie des sciences/Editions
scientifiques et médicales Elsevier SAS

Version francaise abrégée

Nous nous intéressons dans cette Note a I'existence d’attracteurs exponeaitiédsdéfinition ci-apres)
pour des équations de réaction-diffusion d&dsle la forme (1).

La difficulté essentielle est qu’ici nous ne pouvons pas utiliser les constructions classigudd](
et [3]); la raison étant que les espaces dans lesquels nous travaillons (définis dans la section 1) n'ont pe
structure hilbertienne. En effet, les constructions usuelles font appel de maniére essentielle a des project
orthogonaux de rang fini.

Afin de contourner cette difficulté, nous donnons dans cette Naiie roposition 1 ci-dessous) une
construction d’attracteurs exponentiels, valable dans des espaces de Banach, qui généralise celle d
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pour des opérateurs s’écrivant comme somme d’une contraction et d’'un opérateur compact (dans un
précisé ci-dessous). On en déduit alors I'existence d’un attracteur exponentiel pour (1).

Introduction

Our aim in this Note is to prove the existence of exponential attractors for reaction-diffusion equatiot
in R3 of the form (1) below.

In [4], the authors obtained the existence of finite-dimensional attractors for (1) under very restricti
conditions on the nonlinear term. Then, in [6], the authors were able to weaken these assumptions. Howe
they obtained the finite-dimensionality of the attractor&#iR?), whereas the associated semigroup was
constructed on functions that are boundedads— oo (seebelow for the exact definition of the phase
space). Here, by constructing an exponential attractor, we are able to prove the finite-dimensionality of
global attractor in the phase space. Such spaces of bounded functions play a crucial role for problem
Indeed, we have the existence of the finite-dimensional global attractor in these spaces without any de
assumption on the initial data. Of course, we need a decay condition on the forcing term, but this decay
be arbitrarily slow ¢eeSection 1 below), and, without this decay assumption, the attractor has generall
infinite dimensiongee[6] and [7]; seealso Remark 3 below). Thus, these spaces give here the sharp borde
between the finite and the infinite-dimensionality of the global attractor.

Now, the study of exponential attractors has also an interest on its own. Indeed, compared to
exponential attractor, the global attractor presents two defaults for practical purposes. Indeed, it is vi
sensitive to perturbations and the rate of attraction of the trajectories may be small. An exponent
attractor however, as its name indicates, attracts exponentially the trajectories and will thus be more sta
Furthermore, in some situations, the global attractor can be very simple (say, reduced to one point) and 1
fails to capture interesting transcient behaviors. Again, in such situations, an exponential attractor could
a more suitable object.

In [1], the authors proposed a construction of exponential attractors for equations in unbounded doma
(seealso [4]). However, as it is the case for the usual construction of [3], it is only valid in Hilbert spaces
indeed, it makes an essential use of orthogonal projectors with finite rank. This construction will thus n
apply to (1) (we shall see below that the phase space for our problem is not a Hilbert space).

We propose, for maps that can be decomposed into the sum of a contraction and of a compact (in a s¢
precised below) map, a construction that is not based on projectors and that is therefore valid in Ban:
spaces. As an application, we obtain the existence of an exponential attractor for (1) in the phase space

We only give in this Note the proof of our main result (Proposition 1 below). Indications on the proof:
of some results may be found in [6]. Furthermore, all the details will appear in [5].

1. Setting of the problem

This Note is devoted to the study of the long time behavior of the solutions of the following problem:

{&u:Amu—f(u,Vmu) —dou+g(t), zeR3, 1)

u|t:7’ =Ur.

Here,u = (u!,...,u*) is an unknown vector valued functiorf,= (f*,..., f*) and g(t) = g(t,z) =
(g'(t,z),...,g%(t,z)) are given functionsA, is the Laplacian with respect to the variables=
(x1,x2,23) @and g is a fixed strictly positive number.
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We assume that the nonlinear tefnsatisfies the conditions:

1. feCYRF x R3* RF);
2. f(v,p)-v=0; (2
3. [f(v,p)| < P[Q([)(L +[pl7), ¢<2;

for everyv € R*, p € R** and for some monotonous functiéh (Here and below, we denote hy v the
inner product inR*.)

In order to introduce the phase space for our problem and to impose the assumptions on the right-h
sideg, we give the following definitionge€e[6]):

DEFINITION 1.—LetBZ be an openk-ball in R® centered aty, and let as usuaiv‘*(B% ) denote
the Sobolev space of the functions &f' whose derivatives up to the ordérbelong to L?(B%)
(lu, BE ll¢.p = llullwer(sr ). For everyl >0 and1 < p < oo, we define the space

0o

W) = {ue D) ¢ lulbey = sup B, < oo
zo
(roughly speaking, the spa&i&éﬁ’p (R?) consists of functions whose derivatives up to the ofdae bounded

as|x| — oo) and the space

Wit (R = {ue WiP®R?) ¢ tim |

|zo|—00

u,B;OHE’p:O}.

In other words, the functions Wﬁ?}%(ﬂ@) decay agz| — co. We define similarly the spacég (R*) and
L} o(R?) (corresponding td = 0).

We assume that the right-hand sige Cé(R,Lﬁ’O(RB’)) and is quasiperiodic with respect tawith ¢
independent frequencies, i.e., there exist a function

G e C' (T LE (R?)),

T* being the/-dimensional torus, rationally independent frequenaies(al, ..., af) and the initial phase
¢o = (95, -, #) € T* such that

g(t,x) = G(¢o +at, ).

The phase space for problem (1) will be the spéce W§’5’2(R3), whereé > 0 is chosen such that
6 <min{1/2,1/q— 1/2} and the exponentis the same as in (2).

Remark1. — Since the exponeitin the definition of the phase space is small enough, one can easily
verify, using the third assumption of (2) and the Sobolev embedding theoremg(that,v) € L2(R3) if
v € ® and consequently equation (1) can be understood in the sense of distributions.

Proceeding as in [6], we have the following result:

THEOREM 1. —Let the above assumptions hold. Then, prob{&jhas a unique solution(t) € ®, for
everyu, € ®. Moreover, the following estimate holds

HU(UH¢ < Ql(HurH@) emet=T) 4 Q1(||G|\cl(1rf,Lg(R3)))7

wheres > 0 and@; is some monotonous function depending only on the equation.
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COROLLARY 1.—-Theoreml implies that thefamily of) operators(called the process associated with
the equatioit

Ug(t,7) : ©— @, u(t)=Uy(t,7)us,

are well defined and are bounded#as ™ — ~c.

2. Existence of an exponential attractor

In order to study the long time behavior of the nonautonomous equation (1), we actually conside
following [2], the family of equations

{8tu =Azu— f(u, Vyu) — Nou+ £(t),

Ult=r = Ur,

®3)

for all € € H(g), where the hullH(g) is defined as follows:
H(g) ={G(¢+at,x): ¢ T}

Since the functiong € H(g) can be parametrized by the poirtsof the ¢-dimensional torus, we shall
denote byU, (¢, 7) the family of processes associated with (3) (instead4t, 7), with {(t) = G(¢ + at)).

It is known (seefor instance [2]) that the family of process€g(t,7), ¢ € T*} can be extended to a
semigroufs; acting on® x T* by formula

St(v,0) = (U¢(t, 0)v, Ttgb), Tip= o+ at. (4)

Thus, instead of studying the long time behavior of the single equation (1), we shall actually study the lo
time behavior of the trajectories of the semigréyp ® x T* — & x T*.

We recall that the compact sdtc ® x T* is called the global attractor for the semigrdiypon ® x T*
if it is invariant by S, i.e.,

StA=A, fort>0, (5)
and it attracts the bounded subset®of T¢ ast — oo, i.e., for everyB C ® x T* bounded

thm diStq,XTK{StB, A} - O,

wheredisty, denotes the Hausdorff semi-distancé/in

THEOREM 2. —Let the above assumptions hold. Then, the semig&ugefined by(4) possesses the
global attractor.4A on ® x T*. Moreover, this attractor has finite fractal dimensiondinx T*:

dimp (A, ® x T*) < oo.

The existence of the global attractor is obtained in [6]. Now, the fact that is has finite fractal dimensic
in the topology of® x T* will be a consequence of the existence of an exponential attractor below (we not
however that this last property can be proved direstg[5] and [7]).

Remark?2. — We recall that we require thatt) € L%)O(IR?), for everyt > 0. It is worth emphasizing
here thaf.*(R*) C L ,(R?). Consequently, right-hand sidgsbelonging toL.*(R?) are also admissible.
We also note thatt? ,(R?) is larger tharL.?(R?), sincearbitrary decay rates als;| — oo are allowed. For
example, the functiop(z) = 1/ In(|z|? + 2) belongs tal} o (R?), but evidentlyg ¢ L*(R?).

Remark3. — As noted in the introduction, such decay rates of the right-hand ¢side |z| — oo
(9(t) € L%70(R3)) is essential to prove the finite-dimensionality of the global attractor. Indeed, even in
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the autonomous casgt) = g, the global attractor may have infinite fractal dimensiop & L2 (R?) but
g ¢ L} ((R?) (seefor instance [6] or [7]).

We first recall that a compact sétt ¢ ® x T is called an exponential attractor for the semigr8upn
® x T* if it is semi-invariant byS,, i.e.,

SsMc M, fort=0, (6)

it attractsexponentiallthe bounded subsets ®fx T, i.e., there exists a constant> 0 such that for every
B C ® x T* bounded

diste e {Se B, M} < C (|| Blgxre) e,
and it has finite fractal dimension i x T, i.e.,dimp (M, ® x T*) < cc.

Remark4. — We note that since we lose the invariance (assumption (6) instead of (5)), then, contrarily
the global attractor, an exponential attractor is not necessarily unique. However, we alwaysdave

THEOREM 3. —Let the above assumptions hold. Then, the semigfugefined by(4) possesses an
exponential attractop\ on & x T,

The proof of this theorem is based on the following sufficient conditions for the existence of al
exponential attractor for maps Banachspaces which generalize those given in [1] and [3] that are valid
in Hilbert spaces only:

PrROPOSITION 1. —Let H and H; be two Banach spaces such ti#at is compactly embedded ii. Let
also X be a bounded subset &f. We consider a nonlinear mdp: X — X such that. can be decomposed
into a sum of two maps

L=Ly+K, Ly:X—H, K:X—H,
whereL is a contraction, i.e.,
HLO(xl) — Lo(ZCQ)HH <allzy —xallg, Vri,ae € X, witha<1/2, @)
and K satisfies the condition
K (21) = K(22)|| y, < Cllzr —x2llm,  Vai, 22 € X, (8)
Then, the mag : X — X possesses an exponential attractor.

Sketch of the proof. ket us fixé > 0 such tha(a + 6) < 1. SinceX is bounded, there exists a ball
B(R, o, H) of radiusR centered aty € X in H which containsX. We setE, =V, = {xo}. It follows
from (8) that theH; -ball B(C'R, K (x¢), H1) covers the imagé{ (X ). We now cover this ball by a finite
number o) R balls in H with centergy; (it is possible to do so because the embeddiag- H is compact).
Moreover, the minimal number of balls in this covering can be estimated as follows:

NQR(B(CR,K({E()),Hl),H) = NQR(B(CR,O,Hl),H) = Ng/c(B(l,O,Hl),H) = N(G)

(It is essential for us that this number be independen®9fThus, we have constructeddd-covering
of K(X). It follows from assumption (7) that the family of balls with centers+ Lo(xo) and with
radius (o + 0)R coversL(X). Now, the centers of the balls in this covering may go ouf.¢X) and
even out of X. To avoid this problem, we increase the radius twice and construct the2 iew- 6)-
covering{B(2(a + 0)R,z%, H)},i=1,...,N(0), of L(X) so thatz} € L(X). We then sel; = {zt,
i=1,...,N(0)}.
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Applying the above procedure to every ball in this new covering, we obtaif{lae+ #))? R-covering
of L2(X) with N (6)? balls. We denote by, the set of their centers. Repeating this procedure, we finally
construct a sequence of séfsC L*(X) such that

disty (LF(X), Vi) < R(2(a+6))" and #Vi < N(6). 9)

To obtain the invariance, we now introduce the sequence ofsets L(E),_1) U Vj, and we set
Ew=|JEy;  M=[Exlu,
k=1

where [- ]y denotes the closure if. Let us verify thatM is an exponential attractor fab on X.
Indeed, the invariance follows immediately from our construction. Since M and2(«a + 6) < 1, the
exponential attraction property is a consequence of (9). Thus, there remains to estimate the dimensio
M or, equivalently, that of...

We note that.(X) C X and that

U EccLrx)c | B(v,R2(0+ )", H).

k>n vEV,

We fix e > 0 and we choose the smallest integesuch thatR(2(« + 0))™ <. Then

Ne(Boo, H) < No ([ Bi )+ No (U Br) <D #E + #Virs <CN(0)"
k>n k<n

k<n

Here, we have used the fact that;, < C1 N (0)™, which can be easily deduced from the recurrent formula
#E, < #E, 1+ N(0)". Thus,dimg (X, H) < log, N(0)/log,(1/(2(8 + «))), and Proposition 1 is
proved. O

In order to have compactness when proving Theorem 3, we obtain, after having introduced the proj
decomposition (similar in spirit to that considered in [4]), estimates in weighted Sobolev spaces.
particular, we use the compactness of the injeciiéfi ¢/22(R?, o dz)  ® for proper weightsp. The
details will appear in [5].

Remark5. — Analogous sufficient conditions are given in [7] for the existence of the global attractor.
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