June 26, 2013

Hamel basis and additive functions

Hamel basis

References: [Hei, Section 4.1], [Ku, Section 4.2, Chapter 11], [NS, Kapitola 4.7], [A, Section 6F]¹

Existence of Hamel basis

Definition 1. Let V be a vector space over a field K. We say that B is a Hamel basis in V if B is linearly independent and every vector $v \in V$ can be obtained as a linear combination of vectors from B.

This is equivalent to the condition that every $x \in V$ can be written in precisely one way as

$$\sum_{i \in F} c_i x_i$$

where F si finite, $c_i \in K$ and $x_i \in B$ for each $i \in F$.

It is also easy to see that for any vector space W and any map $g: B \to W$ there exists exactly one linear map $f: V \to W$ such that $f|_B = g$.

Theorem 1. Let V be a vector space over K. Let A be an linearly independent subset of V. Then there exist a Hamel basis B of V such that $A \subseteq B$. (Any linearly independent set is contained in a basis.)

Proof. Zorn's lemma.

Corollary 1. Every vector space has a Hamel basis.

Proof. For $V = \{0\}$ we have a basis $B = \emptyset$.

If $V \neq \{0\}$, we can take any non-zero element $x \in V$ and use Theorem 1 for $A = \{x\}$.

In some cases we are able to write down a basis explicitly, for example in finitely-dimensional space or in the following example. However, the claim that a Hamel basis exists for each vector space over any field already implies AC (see [HR, Form 1A]).

Example 1. Let c_{00} be the space of all real sequences which have only finitely many non-zero terms. Then $\{e^{(i)}; i \in \mathbb{N}\}$, where the sequence $e^{(i)}$ is given by $e_n^{(i)} = \delta_{in}$, is a Hamel basis of this space.

 $^{^1} See \ also: \ {\tt thales.doa.fmph.uniba.sk/sleziak/texty/rozne/AC/cont.pdf}$

Cardinality of Hamel basis

Proposition 1. If B_1 , B_2 are Hamel bases of a vector space V, then card $B_1 = \text{card } B_2$.

Because of the above result, it makes sense to define *Hamel dimension* of a vector space V as the cardinality of any of its bases.

Hamel bases in linear normed spaces and Banach spaces

 $\mathbf{2}$

Cardinality. Recall that a subset A of a topological space X is called *meagre* in X if it is a countable union of nowhere-dense sets. Baire category theorem: If X is a complete metric space, then X is not meagre in X; i.e., X cannot be obtained as a countable union of nowhere-dense sets. (Similar claim is true for locally compact Hausdorff spaces.)

Theorem 2. Let X be an infinite-dimensional Banach space.

- a) If S is a subspace of X which has countable Hamel basis, then X is meagre in X.
- b) Any Hamel basis of X is uncountable.

The proof uses Baire category theorem and the fact that every finitelydimensional subspace of a Banach space is closed (see [FHH⁺, Proposition 1.36]). The same argument can be used to show analogous result for completely metrizable topological vector spaces (see [AB, Corollary 5.23]).

The above result can be in fact improved: It can be shown that cardinality of infinite-dimensional Banach space is at least \mathfrak{c} . We will give here a proof from [L].

We first recall a few fact about almost disjoint families (see [BS, §III.1], [B, Theorem 5.35], [JW, Theorems 17.17, 17.18]).

Definition 2. Let $\mathcal{A} = \{A_i; i \in I\}$ be a system of subset of X. We say that \mathcal{A} is an *almost disjoint family* or AD family on X, if card $A_i = \text{card } X$ for each $i \in I$ and the intersection $A_i \cap A_j$ is finite for each $i, j \in I, i \neq j$.

Lemma 1. If X is an infinite countable set then there is an AD family on X of cardinality c.

Proof. We will work with $X = \mathbb{Q}$. (The obtained AD family can be transferred to any infinite countable set.)

For every $r \in \mathbb{R}$ there is an injective sequence $f_r \colon \mathbb{N} \to \mathbb{Q}$ of rational numbers, which converges to r. Put $A_r = f_r[\mathbb{N}]$. It is easy to see that $\{A_r; r \in \mathbb{R}\}$ is an AD family. \Box

 $^{^2}I$ should mention that I've learned about some of these results (and their proofs) from discussions at http://math.stackexchange.com. See http://math.stackexchange.com/questions/74101/, http://math.stackexchange.com/questions/33282/ and http://math.stackexchange.com/questions/79184/.

Theorem 3. If X is an infinite-dimensional Banach space then Hamel dimension of X is at least \mathfrak{c} .

Proof. We first construct inductively systems $\{x_i; i \in \mathbb{N}\} \subseteq X$ and $\{x_i^*; i \in \mathbb{N}\} \subseteq X^*$ such that $x_i^*(x_j) = \delta_{ij}$ and $||x_i|| = 1$.

Let us describe the inductive step in detail. Suppose we have already constructed x_1, \ldots, x_k and x_1^*, \ldots, x_k^* fulfilling the above conditions. Then the space X can be written as $X = [x_1, \ldots, x_k] \oplus X'$ and the space X' is again infinitedimensional.³ Then we can choose any $x_{k+1} \in X'$ such that $||x_{k+1}|| = 1$. The map x_{k+1}^* : $[x_1, \ldots, x_{k+1}] \to \mathbb{R}$ given by $x_{k+1}^*(x_i) = \delta_{ij}$ is linear map on a finitely-dimensional subspace, hence it is continuous. By Hahn-Banach theorem it can be extended to a linear continuous function from X to \mathbb{R} .

The above conditions imply $x_k \notin [\{x_j; j \in \mathbb{N}, j \neq k\}]$, since $x_k \notin (x_k^*)^{-1}(0)$ and the later set is a closed subspace of X containing $\{x_j; j \in \mathbb{N}, j \neq k\}$.

Now let $\mathcal{A} = \{A_i; i \in \mathbb{R}\}$ be an AD family on \mathbb{N} . For each $i \in \mathbb{R}$ we define

$$a_i = \sum_{j \in A_i} \frac{1}{2^j} x_j.$$

(Not that $\|\frac{1}{2^j}x_j\| \leq \frac{1}{2^j}$, which implies that the above series is Cauchy and thus convergent.)

We will show that $\{a_i; i \in \mathbb{R}\}$ is an independent set. By Theorem 1 this implies that Hamel dimension of X is at least \mathfrak{c} .

Let us assume that $\sum_{i \in F} c_i a_i = 0$ for some finite set F, where all c_i 's are non-zero. Let

$$P := \bigcup_{\substack{i,j \in F \\ i \neq j}} (A_i \cap A_j).$$

This set is finite, since \mathcal{A} is an AD family. The above finite sum can be rewritten as

$$\sum_{j=1}^{\infty} d_j x_j = 0$$

where $d_j = \frac{c_i}{2^j}$ whenever $i \in F$ and $j \in A_i \setminus P$. Since each set $A_i \setminus P$ is infinite, we have infinitely many non-zero coefficients in this sum. Thus we can rewrite the last equation as

$$x_k = \sum_{i \neq k} f_i x_i$$

for some k and $f_i \in \mathbb{R}$, which contradicts the assumption that $x_k \notin \overline{\{x_j; j \neq k\}}$.

Existence of unbounded linear functionals.

Proposition 2. If X is an infinite-dimensional linear normed space, then there exist non-continuous linear function $f: X \to \mathbb{R}$.

³Here we used the fact that if $f \in X^*$ and $f(x) \neq 0$, then $X = \text{Ker } f \oplus [x]$.

Proof. Choose an infinite independent set $\{x_n; n \in \mathbb{N}\}$ such that $||x_n|| = 1$ for each $n \in \mathbb{N}$ and a function $f: X \to \mathbb{R}$ such that $f(x_n) = n$.

Continuity of coordinate functionals. If *b* is a Hamel basis of a vector space *X* over \mathbb{R} , and we define $f_b: x \to \mathbb{R}$ which assigns to *x* its *b*-th coordinate, i.e., $x = \sum_{b \in B} f_b(x)b$ for each $x \in X$, then f_b is a linear function from *X* to \mathbb{R} .

Suppose that X is, moreover, a Banach space. We would like to know whether the functions f_b are continuous. We will show that at most finitely many of them can be continuous.

Proposition 3. Let B be a Hamel basis of a Banach space X. Let f_b , $b \in B$, be the coordinate functionals. Then there is only finitely many b's such that f_b is continuous.

Proof. Suppose that $\{b_i; i \in \mathbb{N}\}$ is an infinite subset of B such that each f_{b_i} is continuous. W.l.o.g. we may assume that $||b_i|| = 1$.

Let

$$x := \sum_{i=1}^{\infty} \frac{1}{2^i} b_i.$$

(Since X is complete, the above sum converges.)

We also denote $x_n := \sum_{i=1}^n \frac{1}{2^i} b_i$. Since x_n converges to x, we have $f_{b_k}(x) = \lim_{n \to \infty} f_{b_k}(x_n) = \frac{1}{2^k}$ for each $k \in \mathbb{N}$. Thus the point x has infinitely many non-zero coordinates, which contradicts the definition of Hamel basis.

We can give another proof based on Banach-Steinhaus theorem (uniform boundedness principle). We show first the following:

Lemma 2. Let B be a Hamel basis of a Banach space X. Let f_b , $b \in B$, be the coordinate functionals. Let $C = \{b \in B; f_b \text{ is continuous}\}$. Then $\sup\{||f_b||; b \in C\} < \infty$.

Proof. For any $x \in X$ there is at most finitely many b's in C such that $f_b(x) \neq 0$. This implies that $\sup_{b \in C} |f_b(x)|$ is finite. Banach-Steinhaus theorem this implies $\sup\{||f_b||; b \in C\} < \infty$.

Proof of Proposition 3. Let B be any Hamel basis for X. For any choice of constants c_b , $b \in B$, is the set $\{c_b f_b; b \in B\}$ a Hamel basis as well. The coordinate functionals for this new basis are $g_b = \frac{1}{c_b} f_b$. If the set $C = \{b \in B; f_b \text{ is continuous}\}$ is infinite, then by an appropriate choice of constant c_b we can obtain $\sup\{||f_b||; b \in C\} = \infty$, which contradicts the above lemma.

It is easy to show that finitely many of coordinate functionals can be continuous. If X is a Banach space with a basis B and $x_1, \ldots, x_n \notin X$, then $[x_1, \ldots, x_n] \oplus X$ is a Banach space with a basis $\{x_1, \ldots, x_n\} \cup B$ and there are at least n continuous coordinate functionals.

Also in the space c_{00} from Example 1 with sup-norm all coordinate functionals are continuous. The space c_{00} is, of course, not complete.

Cauchy functional equation

References: [Ku, Section 5.2, Chapter 12], [S, Section 2.1], [Ka, Chapter 1], [Kh, Chapter 7], [Her, Section 5.1], [A, Appendix to Chapter 6]

Let us study the functions $f \colon \mathbb{R} \to \mathbb{R}$ fulfilling

$$f(x+y) = f(x) + f(y).$$
 (1)

The equation (1) is called *Cauchy equation* and functions fulfilling (1) are called *additive functions*.

It is easy to show that

Lemma 3. If a function $f : \mathbb{R} \to \mathbb{R}$ fulfills (1), then

$$f(qx) = qf(x)$$

holds for every $q \in \mathbb{Q}, x \in \mathbb{R}$.

This shows, that the additive functions are precisely the linear maps if we consider \mathbb{R} as a vector space over \mathbb{Q} .

Lemma 3 implies that

Theorem 4. Every continuous solution (1) is of the form f(x) = ax for some $a \in \mathbb{R}$.

Non-linear solutions

Using the existence of Hamel basis in $\mathbb R$ (as a vector space over $\mathbb Q)$ we can show that

Theorem 5. There exist non-linear solution of (1), i.e. functions $f : \mathbb{R} \to \mathbb{R}$ that fulfill (1) but are not of the form f(x) = ax.

Theorem 6. If f is a non-linear solution of (1), then the graph of this function

$$G(f) = \{(x, f(x)); x \in \mathbb{R}\}$$

is dense in \mathbb{R}^2 .

The proof can be found e.g. in [Her, Theorem 5.4].

Theorems 4 and 6 suggest that well-behaved solutions of (1) are linear and that non-linear solutions have to be, in some sense, pathological. Let us mention a one more result in this direction.

Theorem 7. Every measurable solution of (1) is linear.

An elegant proof is given in [Her, Theorem 5.5].

This last result means that by showing the existence of non-continuous solutions of (1) we have also obtained the existence of non-measurable sets.

References

- [A] B. Artmann. *Der Zahlbegriff.* Vandenhoeck und Ruprecht, Göttingen, 1983.
- [AB] Charalambos D. Aliprantis and Kim C. Border. Infinite Dimentional Analysis, A Hitchhiker's Guide. Springer, Berlin, 3rd edition, 2006.
- [B] Lev Bukovský. The Structure of Real Line. Springer, Basel, 2011.
- [BŠ] Bohuslav Balcar and Petr Štěpánek. *Teorie množin.* Academia, Praha, 2001.
- [FHH⁺] Marián Fabian, Petr Habala, Petr Hájek, Vicente Montesinos, and Vaclav Zizler. Banach Space Theory. The Basis for Linear and Nonlinear Analysis. Springer, New York, 2011. CMS books in mathematics.
- [Hei] Christopher Heil. A Basis Theory Primer. Springer, New York, 2011.
- [Her] Horst Herrlich. *The Axiom of Choice*. Springer-Verlag, Berlin, 2006. Lecture Notes in Mathematics 1876.
- [HR] Paul Howard and Jean E. Rubin. Consequences of the axiom of choice. Mathematical Surveys and Monographs. 59. Providence, RI: American Mathematical Society (AMS), 1998.
- [JW] Winfried Just and Martin Weese. Discovering modern set theory II: Set-theoretic tools for every mathematician. Amer. Math. Soc., Providence, RI, 1997. Graduate Studies in Mathematics 18.
- [Ka] Pl. Kannappan. Functional Equations and Inequalities with Applications. Springer, New York, 2009. Springer Monographs in Mathematics.
- [Kh] A. B. Kharazishvili. Strange functions in real analysis. Marcel Dekker, New York, 2000.
- [Ku] Marek Kuczma. An introduction to the theory of functional equations and inequalities. Cauchy's euqation and Jensen's inequality. Birkhäuser, Basel, 2009.
- [L] H. Elton Lacey. The Hamel dimension of any infinite dimensional separable Banach space is c. *Amer. Math. Monthly*, 80(3):298, 1973.
- [NS] A. Naylor and G. Sell. Teória lineárnych operátorov v technických a prírodných vedách (Linear Operator Theory in Engineering and Science). Alfa, Bratislava.
- [S] Christopher G. Small. *Functional Equations and How to Solve Them.* Springer, New York, 2007. Problem Books in Mathematics.