6 – Spazi di Hilbert, spazi di Sobolev, applicazioni

Esercizio. Sviluppare una dimostrazione diretta del teorema di Lax-Milgram utilizzando la teoria degli operatori e seguendo lo schema nell'Osservazione V.6 del testo.

Esercizio. Si consideri lo spazio

$$V := \left\{ u \in L^2(\mathbb{R}) : \|u\|_1^2 := \|u\|_{L^2}^2 + \int_{\mathbb{R}} |\xi|^2 |\widehat{u}(\xi)|^2 \, d\xi < \infty \right\},\,$$

dove \widehat{u} è la trasformata di Fourier di u, munito della norma $\|\cdot\|_1$ definita sopra. Dimostrare che V è uno spazio di Hilbert. Nel caso in cui u è una funzione regolare, si può caratterizzare $\|u\|_1$ in termini della derivata di u? Si consideri ora, al variare di $s \in (0, \infty)$, gli spazi

$$V_s := \left\{ u \in L^2(\mathbb{R}) : \|u\|_s^2 := \|u\|_{L^2}^2 + \int |\xi|^{2s} |\widehat{u}(\xi)|^2 \, \mathrm{d}\xi < \infty \right\},\,$$

Che relazioni ci sono tra i V_s al variare di s? È possibile dimostrare delle disuguaglianze di interpolazione tra le norme $\|\cdot\|_s$?

Esercizio. Dimostrare (Oss. V.4) che, se $a(\cdot, \cdot)$ è una forma bilineare semidefinita positiva, allora la funzione $v \mapsto a(v, v)$ è convessa su H.

Esercizio. Sia data $f:[0,+\infty)\to\mathbb{R}$ definita da $f(x):=\sum_{n=0}^{+\infty}(-1)^n\chi_{[n,n+1)}$ e, per $n\in\mathbb{N}$, sia $\xi_n:[0,1)\to\mathbb{R}$ la restrizione all'intervallo [0,1) della funzione $x\mapsto f(2^nx)$. Dimostrare che $\{\xi_n\}_{n\in\mathbb{N}}$ è un sistema ortonormale di $L^2(0,1)$. Discutere la completezza di $\{\xi_n\}_{n\in\mathbb{N}}$ (può essere utile un po' di algebra lineare).

Esercizio (comprensione della definizione). Sia (a,b) un intervallo limitato. Sia $u \in C^1(a,b)$ e sia u' la derivata classica di u. Dimostrare in dettaglio che, se $u' \in L^p(a,b)$ ($1 \le p \le \infty$), allora $u \in W^{1,p}(a,b)$ e u' è anche derivata debole di u.

Esercizio (comprensione della definizione e costruzione di esempi). Sia (a, b) un intervallo limitato. Sia $u \in C^0([a, b]) \cap C^1(a, b)$. Per quali $p \in [1, \infty]$ possiamo concludere che $u \in W^{1,p}(a, b)$?

Esercizio. Sia I un intervallo limitato. Allora sappiamo che $H^1(I)$ è immerso in modo continuo (e compatto) in $C(\overline{I})$, ovvero si ha

$$||v||_{C(\overline{I})} \le C(I)||v||_{H^1(I)}.$$

In che modo la costante di immersione dipende dalla lunghezza di I? In altre parole, è possibile scegliere C in modo indipendente da |I|? Cosa succede se |I| diventa grande? E se diventa piccola?

Esercizio. Sia I un intervallo limitato e $u \in W^{1,\infty}(I)$ una funzione tale che $u(x) \geq 0$ per ogni $x \in \overline{I}$. Si ponga v(x) = G(u(x)) dove $G(r) = r^{1/2}$. È possibile dimostrare che v appartiene a qualche spazio di Sobolev? Dove sorgono le difficoltà? Provare a illustrare la situazione con qualche esempio (**N.B.**: si tratta di una questione non elementare; non si pretende pertanto una risposta completa, ma soltanto qualche esempio significativo).

Esercizio. Si consideri l'equazione

$$-u'' + u^3 = f \qquad \text{in } I = (-1, 1), \tag{1}$$

dove $f \in L^2(I)$. Dimostrare che il problema ai limiti ottenuto imponendo le condizioni di Dirichlet u(-1) = u(1) = 0 ha una e una sola soluzione seguendo il seguente schema:

• Considerare il funzionale

$$F: H_0^1(I) \to \mathbb{R}, \qquad F(v) := \int_{-1}^1 \left(\frac{1}{2}|v'(x)|^2 + \frac{1}{4}|v(x)|^4 - f(x)v(x)\right) dx$$

e mostrare che F ha uno (e un solo) punto di minimo u.

• Se u è il minimo trovato sopra, dimostrare che, per ogni $v \in H_0^1(I)$,

$$\lim_{t \to 0} \frac{F(u+tv) - F(u)}{t} = 0.$$

- Esplicitando l'espressione della "derivata direzionale" a primo membro, dedurre che u risolve l'equazione (1).
- Dimostrare, attraverso una stima contrattiva, che la soluzione è unica¹.

Data una funzione g sufficientemente regolare (diciamo, almeno continua), si consideri ora l'equazione ellittica semilineare

$$-u'' + g(u) = f$$
 in $I = (-1, 1),$ (2)

sempre corredata da condizioni di Dirichlet omogenee. Sotto quali condizioni su g possiamo ripetere il ragionamento fatto prima? Provare a considerare i casi $g(u) = -u^3$, $g(u) = u^3 - u$, $g(u) = e^u$, $g(u) = \ln(1+u) - \ln(1-u)$ (quest'ultimo caso ovviamente "costringe" la soluzione u a prendere valori nell'intervallo I = (-1,1)), ciascuno dei quali mette in luce almeno un fenomeno interessante.

_

 $^{^1{\}rm Questo}$ infatti non segue, almeno direttamente, dall'unicità del punto di minimo. A priori potrebbero esserci soluzioni dell'equazione che non sono punti di minimo del funzionale F