ANALISI MATEMATICA 2 – COMPLEMENTI A.M. 1

Scritto del 26 luglio 2022

Esercizio 1. Si consideri la curva $\gamma:[0,2\pi]\to\mathbb{R}^3$ definita da $\gamma(t)=(\cos t,\sin t,t)$. Per ogni t sia S_t il segmento chiuso che congiunge il punto $\gamma(t)$ all'origine e sia $S:=\bigcup_{t\in[0,2\pi]}S_t$. Osservato che S costituisce una superficie regolare di \mathbb{R}^3 , determinare l'area di S. Data, inoltre, la forma differenziale

$$\omega = e^{yz} (dx + (xz + z^2) dy + (1 + xy + yz) dz),$$

calcolare $\int_{\gamma} \omega$.

Esercizio 2. Si ricordi che una funzione $f:[-1,1] \to \mathbb{R}$ si dice Lipschitziana quando esiste una costante L>0 tale che $|f(x)-f(y)| \le L|x-y|$ per ogni $x,y\in[-1,1]$. Si consideri dunque lo spazio $X=\mathrm{Lip}([-1,1])$ costituito dalle funzioni Lipschitziane su [-1,1] a valori in \mathbb{R} . Osservato che X è uno spazio vettoriale su \mathbb{R} , lo si doti della norma

$$||f||_X := |f(0)| + \sup \left\{ \frac{|f(x) - f(y)|}{|x - y|} : x, y \in [-1, 1], x \neq y \right\}.$$

Dimostrare innanzitutto che $\|\cdot\|_X$ è effettivamente una norma. Dimostrare quindi che esiste una costante C>0 tale che

$$\max_{x \in [-1,1]} |f(x)| =: ||f||_{\infty} \le C||f||_{X} \quad \text{per ogni } f \in X.$$

Dire quindi se vale anche la disuguaglianza inversa, ovvero se esiste una costante C' > 0 tale che

$$||f||_X \le C' ||f||_{\infty}$$
 per ogni $f \in X$.

Infine, dimostrare che X è completo rispetto alla norma $\|\cdot\|_X$.

Facoltativo (e riservato agli studenti di Matematica): Dimostrare che lo spazio $Y = C^1([-1,1])$, dotato anch'esso della norma $\|\cdot\|_X$, risulta essere un sottospazio **chiuso** di X, ciò vale a dire che, se una successione di funzioni $\{f_n\} \subset Y$ converge a un limite f nella norma $\|\cdot\|_X$, allora anche f appartiene a Y (ovvero f è derivabile con derivata continua).