International Conference on
“Nonlinear Evolution Equations”

Roma, January 28-31, 2003

On a phase transition model

of Penrose—Fife type

Gianni Gilardi

Dipartimento di Matematica “F. Casorati”
Universita degli Studi di Pavia
Via Ferrata 1, 27100 Pavia, Italy

Tel: +39 0382 505642
Fax: +39 0382 505602
E-mail: gilardi@Qdimat.unipv.it

Home page: http://www-dimat.unipv.it/ gilardi/



1

Introduction

Two-phase Stefan problem (z € Q C R3, t € (0,7T))

Oe+divg=yg energy balance
e =e(z,t) internal energy
q=q(z,1) heat flux
g =g(x,t) heat source
e=19+ X constitutive law for e
q=-Vv Fourier law
¥ = Vs — 9 = I(x,t) relative temperature
X = X(x,t) phase parameter
A =cnst>0 latent heat
X € H(D) X = proportion of

the solide phase

where H is the Heaviside graph

X
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2 Introduction

Typical phase field model

A9

First note that
X € H(Y) <= H ' (X) >\

Then relax (p, v > 0 small constants).
Phase relaxation (Visintin 1985)

pOX +HHX) 2 M
Phase field
pOX — vAX +HHX) 3 M
Allen—Cahn dynamics
pOX — vVAX + W' (X) = X
where W is a double well potential like

W) = X3(1 - X)2
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3 Introduction

Both phase field models are included in
oe+divgq=yg
e=9+XX, q=-V9
uoX — vAX 4+ 95(X) + o' (X) 5 M
where
j:R — [0,+00] convex, proper, l.s.c.
c:R—R smooth, ¢’ Lipschitz

Phase dynamics is the gradient flow governed by the
free energy functional

700 = |96+ [ (500 + 010 - %)

Very wide literature, see lots of references in

M. Brokate & J. Sprekels:
Hysteresis and phase transitions
Springer-Verlag, 1996

A. Visintin:
Models of phase transitions
Birkhauser, 1996

Introduction 3



4 Penrose—Fife

Trouble of previous models
e linearization near U, = 9.

e 1o thermodynamical consistency

Penrose-Fife 1990
e 1o linearization
e thermodynamical consistency

o =1, = absolute temperature: J >0

Generalized model

e +divg=yg
e=19+ X

some constitutive law for q

uoX — vAX 4+ 95(X) + o’(X) 2

IS
| >

where j and o as above
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particular cases

e modified problems

choice of the boundary conditions
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long-time behavior, asymptotic analyses, memory,
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7 CL and CLS

e  Colli-Laurengot 1998 (CL)
e  Colli-Laurengot—Sprekels 1999 (CLS)

The constitutive law for q has the form
q=—Va()

where
a:(0,400) = R

is strictly monotone, concave, onto
suitable behavior near 0 and +oo
(thermodynamical consistency ensured)

Equivalent forms
q=—ki(V)VY and q = ko (W)V(1/9)
where

Ei(9) =/ (¥9) and ky(09) = 9%/ (V)
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8 CL and CLS

Take A = 4 = v = 1 and set 8 := 3j. Then for a
new o the problem reads

KW +X)—Au=yg
u = «a(v)

1
IX—AX+E+0'(X) = -5
£ € B(X)
Boundary conditions:

Opu + cu = given (third type b.c., ¢ > 0)

opX =0 (homogeneous Neumann b.c.)

Initial conditions for ¥ e X.

CL: existence with
a very general «
CLS: regularity and
uniqueness among smooth sol’s

with a much more particular o
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9 CL and CLS

Assumptions of CL:
(besides strict monotonicity and concavity)

here any a > 0

a(®) = -1/9* or a(¥)~Ind (¥ —0t)
a(¥) “between” Ind and ¥ (¥ — 400)

Assumptions of CLS:

a(@) = -1/9 (9 —07)
a(d) =9 (9 — 400)

CL and CLS 9




10 GM

Joint paper with
Andrea Marson (Padova)
Math. Meth. Appl. Sci. 2003

e assumptions on the structure
as general as possible
(fill the gap, if possible)

e Dirichlet conditions for u corresponding to
a given t,ps > 0 on the bdry as a limit case

Assumptions between CL and CLS:
a(d) = —1/9 (¥ —07")
a(¥)  “between” Ind and ¥ (¥ — 400)

e  Existence (third type converges to Dirichlet)

e  Regularity and uniqueness among smooth sol’s
(also for third type b.c.: CLS improved)

GM 10




11 GM

Convergence and existence

e  penalize the Dirichlet condition
e the penalized problem is a third type b.v.p.
e  a priori estimates and weak compactness

e strong compactness and usual monotonicity
methods

Regularity and uniqueness

e CLS argument with modification

Mathematical tools

e use of elementary properties of «

GM 11




12 GM

Precise assumptions on «
(besides strict monotonicity and concavity)

r?a’(r)=1+o0(1) asr— 0
/(1) = coo +0(1) asr — 400 (oo > 0)
with 0<d <1 (d = distance from Fourier)

Notation (r > 0)

ar) = —% +/4(r) (¢ =remainder)

o (afr) - als)) (1—1> >c<1—1>2 >0

s r s r
o P(r) <éa®(r) +cs(1+a(r)) (@ =a)
e  The function foa ™! is Lipschitz continuous in R
e If o(1) becomes O(r) as r — 01, then

[(Coa™)(s)] < ev/(a71)(s)
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13 GM

b {(0(0-(t) + Xo(),0) + [ Vaue(t) - Vo
Q

+1 / (e (£) — ur(t))v

13
- /Q glt)o

Vadmissible v, a.e. in (0,T)

1
phd. OX. — AX. + & + o' (X.) = -7
€

Neumann b.c. for X

9.(0) = 9o, X(0) = Xo
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14 CGRS

Joint paper with
P. Colli, E. Rocca, G. Schimperna (Pavia)

in preparation

e assumptions as general as possible

e Neumann conditions for u

Assumptions on o as above
a() = —1/9 (¥ —01)

a(¥) “between” In¥ and ¢ (¥ — +00)

1 T
d=1 d=0

Further assumption, unfortunately
D(B8) =R and growth conditions at infinity

in particular, no constraints on X
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CGRS

Existence (third type converges to Neumann)

Improvement of the uniqueness proof:
uniqueness of the nonsmooth solution
(it works also for other b.c.)

Regularity and uniqueness among smooth sol’s
(as in GM)

Convergence and existence

approximate the Neumann condition with
third type b.c.

a priori estimates and weak compactness

strong compactness and usual monotonicity
methods

tricky point: main a priori estimate

New uniqueness proof

modification of previous arguments

assumptions on ¢ furtherly reinforced
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16 CGRS

Idea for the main a priori estimate

Recall

,
r)=o(1/r) asr — 0T
rda/(r) = coo +0(1) as r — 400

0<d<1

Q2 C R? open, bounded, connected, smooth
r=0Q, Q=Qx(0,7T)

V=H"(Q)— H=L*Q) <V

H?2 ={ve H*Q): 0,v=0}

reasonable assumptions on data

CGRS 16




e.b.

ph.d.

17 CGRS

9. € L0, T; HYNHY0,T;V')N...
X. € L*(0,T; H>) N H*(0,T; H)

u. € L*(0,T;V), & € L*(Q)

9. >0 ae inQ, 1/9.€ L*0,T;V)
ue = a(t:), & €p(Xe) ae in@Q

(D, (0-(8) + Xo (1)), v) + /Q Vau.(t) - Vo

+e /F U (t)v

:/g(t)v+/h(t)v Yo eV, ae. in (0,7)
Q r

1
O Xe — AX. + & +0' (X)) = — a.e. in Q

O
3-(0) = Yo,  X=(0) = Xo

Limit problem:
same regularity and similar equations
with e =0 in (e.b.)

CGRS
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18 CGRS

t
/ (e.b.)‘ ds
0 t=3s, v="21(s) 4+ uc(s) —cnst

+/ (ph.d.) x O:X. dzds

where Q; = Q x (0,1).

e  main terms (lhs)

% /Q 0. (1)) + /Q a(t)) (a’za)

+ [ Vu.-vo +/ V|2
Q1

/|atx|2 3 | IvOF+ [ o)

e to be compensated (don’t worry)

0 X
O Xeue  (1hs) and - 22 (rhs)
Qs Q: e
o  “source” terms and “easy” terms (rhs)
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19 CGRS

e  Source terms on the right hand side

/ gv—|—/ hv (v =Y. + us — cnst)
t I'x(0,t)

trouble !!!

Trouble 1

/ hd.
T'x(0,t)

The left hand side can help just with

L[ wwr+ [ awe)
3 e+ [

+ V%-W%+/\V%P
Qt t

CGRS 19




20 CGRS

Lemma. Assume
veL*(Q), v>0, and Va(v) € LQ(Q)3

and set

= —— < < .
de 1534 for 0<d<1

Then the trace of v belongs to L (T") and
2 2
[0l ey < 8 IV + s (14101
for any § > 0 and some ¢5s = ¢(4,, ).

Proof. Use the Gagliardo trace theorem and the
Holder and Sobolev inequalities.

So, reasonable assumptions on h yield
(h € L*°(T x (0,T)) works for any d € [0,1])

/ . <6 | |Vu* + 05/ |92 + c5
FX(O,t) Q+ t

and this can be controlled by the left hand side.

CGRS 20




21 CGRS

Trouble 2

/ gue + / hue < c(g, h) Hua||L2(0,T;v)
t I'x(0,t)

with the full V-norm, while the Lh.s. contains only
the seminorm. So, we have to be careful.

Setting for convenience

(f(t),v) 5:/99(15)U+/Fh(t)v for veV

our trouble becomes

/ (f(s),ue(s)) ds
0

We are going to use the Poincaré inequality

lue(t) — me@)% < e /Q Ve (1)

where m, is the mean value
melt) = f et
Q
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22 CGRS

We split and estimate our integral this way

/O (£(5),ue(s) ds

:/0 <f(8),u5(8) —m6(5)> ds
+ [ mels) (7650, 1) s

< 5/@t Vel + c5 | 11720001
Wz Il [ Ime)lds

(even better. . .)

We have to estimate the last integral

CGRS
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23 CGRS

We split the mean value this way

me) = )= f ao)
= — ]527951(t)+ ]{28(195(15))

Hence (forget the remainder, please)

/Ot|m5(s)ds§/0t<]{ﬂ9;8))ds+...

The last mean value is computed via (ph.d.)

1
% =0 Xe — AX + & + O'/(Xe)

CGRS
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24 CGRS

Take the mean value and use 9,X = 0

1
][—gc/\6tXE|+c/|£E|+C/(1+|XED
Q7~9€ Q Q Q

Finally integrate over (0, t)

[ (fat)

<5 |atx€|2+cé+c/ (14 )
Q¢ Q+

+ C/Q (A (recall & € B(X.))

Everything works but the last integral. It should be
controlled by the term

/Q J(X (1))

on the L.h.s. We need the further assumption
[s|] <c(1+j(r)) VreR Vsel(r)

in order to use Gronwall.
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25 CGRS

Uniqueness proof

eb. (B(0(t) / Vue(t
:/Qg(t)v+/Fh(t)v YueV, ae in(0,T)

phd. X —AX+E+0'(X) = —% a.e. in @
¥(0) =g, X(0) =Xp

Integrate the e.b. in ¢

i.e.b. /(19+X v+/ (fo ) Vv = (known, v)

Write eqn’s for two solution and take the difference.
I set 9 =t — h, etc., or write diff{...}. Then

si.e.b. /191)—1—/)(1)—1—/ fo V=0

é ph.d. 8tX — AX + f + dlff{a’ ( z)} = dlﬁ{—l/’l?l}
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26 CGRS

Now

/0 (6i.e.b.)(s) u(s) ds —|—/t (6ph.d.) x X

v =

We obtain

/19u+/ Xu+%/Q‘Vf0tu‘2

1
+7/ \x(t)|2+/ VX2 + [ &x
2 Q Qq Q

= / diff {—1/9; }X — easy term

t
Two possibilities

use v and write ¥ = o~ (u;)

use ¥ and write u; = a()
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27 CGRS

Previous argument (CLS and GM): use w.
This leeds to the integral

/ (14 u? +ud)x?

t

Playing with Holder, one sees that Gronwall works
with smooth u;, namely

u; € L>=(0,T; L°(Q2))

Such a smoothness needs a regularity result.
Assuming just the first reinforcement

r?d(r)=1+0(r) asr—0F
and the data to be smoother, one proves
U; € LOO(O7 T; V)

and uses the 3D Sobolev inclusion V' C L5(Q)
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28 CGRS

Use ¢, instead

Recall

w; = a(¥) and ar) = 7% +0(r)

Reinforce a little more, namely
¢ Lipschitz continuous near 0

whence ¢ globally Lipschitz continuous.
/ Yu+ / Xu
t t
1)

1
+f/|X(t)|2+/ VX% ...
2 Ja Q.

= [ diff{—1/9}X+...

Q1
| ——

(2)

Compensate (1) and (2) and use Lipschitz

CGRS
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29 CGRS

1
duty [P+ [ [9xp
Qt Q t

g/ | difE{L() X + ...
Q.

gc/ WX+ ...

Qu
We have
192
Yu = 9 diff )} > 6y ————
b IM(»—01+W+@

Hence we use the elementary inequality

do 92 1 d dv2
X< = —— 4+ —— (1 + 9 WX
910 < G grag + g ()
and have
do 92

1
XN+ [ o

t

2 Jo, 1+ 0+

Sc/ (149 + vgh)x?

Then OK if d = 0.
Assume 0 < d < 1. We still want to apply Gronwall.
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30

CGRS
Write .
/ 9AX? = / / IEXX
Qt 0 JQ
and play with Holder
1 2
p,g>1 and -4+ -=1
p q
2 4
p::EE[Z,oo) and ¢:= —— € (2,4]

2—d
Then

t
92 < / e X2,
[ o< [ 1y e

t t
d 2 2
ZAHMMWhmﬁ@AHWmm

since ¥; € L>=°(0,T; H) and g < 4.
The compact embedding V C L*(Q) yields

[0l < 01Vl + s [lvll

and we obtain
1 t
| wtvagpe < [ waeee [
t 2 Q1 0

CGRS
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31 In preparation

Cahn—Hilliard type dynamics
KW +X)—Aa@W) =g
X —Aw=0
we —-AX+9dj(X) + o' (X) — .
(VY
homogeneous Neumann b.c. for X and w
some b.c. for either 9 or u

initial conditions for ¥ and X

with « as before (essentially)

e  Main difference in the a priori estimates

some || - || ; replaced by || - |,

e  existence result for the third type problem for u
(0 <d< 1, with A. Marson)

e existence for the Dirichlet problem
should work as in GM

e uniqueness works as before
[0l s < 6Vl +cs llvlly

e dealing with Neumann conditions. .. (hope)

In preparation 31




