International Conference on

$"Nonlinear\ Evolution\ Equations"$

Roma, January 28-31, 2003

On a phase transition model of Penrose–Fife type

Gianni Gilardi

Dipartimento di Matematica "F. Casorati" Università degli Studi di Pavia Via Ferrata 1, 27100 Pavia, Italy

Home page: http://www-dimat.unipv.it/~gilardi/

Two-phase Stefan problem $(x\in\Omega\subset\mathbb{R}^3,\,t\in(0,T))$

•	$\partial_t e + \operatorname{div} \mathbf{q} = g$	energy balance
	e = e(x, t)	internal energy
	$\mathbf{q} = \mathbf{q}(x, t)$	heat flux
	g = g(x, t)	heat source
	$e = \vartheta + \lambda \chi$	constitutive law for e
	$\mathbf{q} = -\nabla \vartheta$	Fourier law
	$\vartheta = \vartheta_{abs} - \vartheta_c = \vartheta(x, t)$	relative temperature
	X = X(x,t)	phase parameter
	$\lambda = \text{cnst} > 0$	latent heat
•	$\chi \in \mathcal{H}(\vartheta)$	$\chi = \text{proportion of}$ the solide phase

where \mathcal{H} is the Heaviside graph

Introduction

Typical phase field model

First note that

$$\chi \in \mathcal{H}(\vartheta) \Longleftrightarrow \mathcal{H}^{-1}(\chi) \ni \lambda \vartheta$$

Then relax $(\mu, \nu > 0 \text{ small constants})$. Phase relaxation (Visintin 1985)

$$\mu \partial_t \chi + \mathcal{H}^{-1}(\chi) \ni \lambda \vartheta$$

Phase field

$$\mu \partial_t \chi - \nu \Delta \chi + \mathcal{H}^{-1}(\chi) \ni \lambda \vartheta$$

Allen–Cahn dynamics

$$\mu \partial_t \chi - \nu \Delta \chi + \mathcal{W}'(\chi) = \lambda \vartheta$$

where \mathcal{W} is a double well potential like

$$\mathcal{W}(\chi) = \chi^2 (1 - \chi)^2.$$

Introduction

Both phase field models are included in

$$\partial_t e + \operatorname{div} \mathbf{q} = g$$

$$e = \vartheta + \lambda \chi, \quad \mathbf{q} = -\nabla \vartheta$$

$$\mu \partial_t \chi - \nu \Delta \chi + \partial j(\chi) + \sigma'(\chi) \ni \lambda \vartheta$$

where

$$j: \mathbb{R} \to [0, +\infty]$$
 convex, proper, l.s.c. $\sigma: \mathbb{R} \to \mathbb{R}$ smooth, σ' Lipschitz

Phase dynamics is the gradient flow governed by the free energy functional

$$\mathcal{F}_{\vartheta}(\chi) = \frac{\nu}{2} \int_{\Omega} |\nabla \chi|^2 + \int_{\Omega} \left(j(\chi) + \sigma(\chi) - \lambda \vartheta \chi \right)$$

Very wide literature, see lots of references in

M. Brokate & J. Sprekels:

Hysteresis and phase transitions
Springer-Verlag, 1996

A. Visintin:

Models of phase transitions Birkhäuser, 1996

Introduction

1	Penrose-Fife
4	I em ose-r ne

Trouble of previous models

- linearization near $\vartheta_{abs} = \vartheta_c$
- no thermodynamical consistency

Penrose–Fife 1990

- no linearization
- thermodynamical consistency
- $\vartheta = \vartheta_{abs} = \text{absolute temperature:} \quad \vartheta > 0$

Generalized model

$$\partial_t e + \operatorname{div} \mathbf{q} = g$$

$$e = \vartheta + \lambda \chi$$

some constitutive law for ${\bf q}$

$$\mu \partial_t \chi - \nu \Delta \chi + \partial j(\chi) + \sigma'(\chi) \ni \frac{\lambda}{\vartheta_c} - \frac{\lambda}{\vartheta}$$

where j and σ as above

Penrose-Fife _____

5	References	S
• modifi	ular cases ied problems of the boundary conditions	
Well-pose	edness	
	n, Kenmochi, Laurençot, Niezgódka, Zheng, (several combinations)	
Other dir	rections:	
	behavior, asymptotic analyses, memor approach, Cahn-Hilliard dynamics	у,
Reference	es	5

Colli, Grasselli, Ito 2002: parabolic-hyperbolic related problems

Recupero 2002: memory Shen, Zheng 2002: actractors

Ito, Kenmochi, Kubo (to appear): well-posedness, also C-H dyn Rocca (to appear): well-posedness with C-H dyn and memory Rocca, Schimperna (to appear): C-H dyn and Fourier law, well-posedness

Rocca, Schimperna (to appear): C-H dyn and memory, asymptotics

References

6

- Colli–Laurençot 1998 (CL)
- Colli–Laurençot–Sprekels 1999 (CLS)

The constitutive law for ${\bf q}$ has the form

$$\mathbf{q} = -\nabla \alpha(\vartheta)$$

where

$$\alpha:(0,+\infty)\to\mathbb{R}$$

is strictly monotone, concave, onto suitable behavior near 0 and $+\infty$ (thermodynamical consistency ensured)

 ${\bf Equivalent\ forms}$

$$\mathbf{q} = -k_1(\vartheta)\nabla\vartheta$$
 and $\mathbf{q} = k_2(\vartheta)\nabla(1/\vartheta)$

where

$$k_1(\vartheta) = \alpha'(\vartheta)$$
 and $k_2(\vartheta) = \vartheta^2 \alpha'(\vartheta)$

CL and CLS _______ 7

Take $\lambda = \mu = \nu = 1$ and set $\beta := \partial j$. Then for a new σ the problem reads

$$\begin{aligned} \partial_t(\vartheta + \chi) - \Delta u &= g \\ u &= \alpha(\vartheta) \\ \partial_t \chi - \Delta \chi + \xi + \sigma'(\chi) &= -\frac{1}{\vartheta} \\ \xi &\in \beta(\chi) \end{aligned}$$

Boundary conditions:

$$\partial_n u + cu = \text{given}$$
 (third type b.c., $c > 0$)
 $\partial_n \chi = 0$ (homogeneous Neumann b.c.)

Initial conditions for ϑ e χ .

CL: existence with a very general α

CLS: regularity and uniqueness among smooth sol's with a much more particular α

CL and CLS _

Assumptions of CL:

(besides strict monotonicity and concavity)

here any a > 0

$$\alpha(\vartheta) \approx -1/\vartheta^a \quad \text{or} \quad \alpha(\vartheta) \approx \ln \vartheta \quad (\vartheta \to 0^+)$$

 $\alpha(\vartheta) \quad \text{"between"} \quad \ln \vartheta \text{ and } \vartheta \quad \quad (\vartheta \to +\infty)$

Assumptions of CLS:

$$\alpha(\vartheta) \approx -1/\vartheta \quad (\vartheta \to 0^+)$$

 $\alpha(\vartheta) \approx \vartheta \quad (\vartheta \to +\infty)$

10	$\mathbf{G}\mathbf{M}$
Joint paper with	
Andrea Marson (Padova)	
Math. Meth. Appl. Sci. 2003	

- assumptions on the structure as general as possible (fill the gap, if possible)
- **Dirichlet** conditions for u corresponding to a given $\vartheta_{abs} > 0$ on the bdry as a limit case

Assumptions between CL and CLS:

$$\begin{split} \alpha(\vartheta) &\approx -1/\vartheta &\qquad (\vartheta \to 0^+) \\ \alpha(\vartheta) \quad \text{"between"} & \ln \vartheta \text{ and } \vartheta \quad (\vartheta \to +\infty) \end{split}$$

- Existence (third type converges to Dirichlet)
- Regularity and uniqueness among smooth sol's (also for third type b.c.: CLS improved)

GM ______ 10

_____ 11

GM _

11 _____ GM

12 _____ GM

Precise assumptions on α

(besides strict monotonicity and concavity)

$$r^2\alpha'(r) = 1 + o(1)$$
 as $r \to 0^+$
$$r^d\alpha'(r) = c_\infty + o(1)$$
 as $r \to +\infty$ $(c_\infty > 0)$ with $0 \le d \le 1$ $(d \approx \text{distance from Fourier})$

Notation (r > 0)

$$\alpha(r) = -\frac{1}{r} + \ell(r)$$
 ($\ell = \text{remainder}$)

- $\bullet \qquad \left(\alpha(r) \alpha(s)\right) \left(\frac{1}{s} \frac{1}{r}\right) \geq c \left(\frac{1}{s} \frac{1}{r}\right)^2 \qquad c > 0$
- $\ell^2(r) \le \delta \alpha^2(r) + c_\delta (1 + \widehat{\alpha}(r))$ $(\widehat{\alpha}' = \alpha)$
- The function $\ell \circ \alpha^{-1}$ is Lipschitz continuous in $\mathbb R$
- If o(1) becomes O(r) as $r \to 0^+$, then

$$|(\ell \circ \alpha^{-1})'(s)| \le c\sqrt{(\alpha^{-1})'(s)}$$

GM ______12

13 _____ GM

$$\begin{split} \text{e.b.} &\quad \langle \partial_t (\vartheta_\varepsilon(t) + \chi_\varepsilon(t)), v \rangle + \int_\Omega \nabla u_\varepsilon(t) \cdot \nabla v \\ &\quad + \frac{1}{\varepsilon} \int_\Gamma (u_\varepsilon(t) - u_\Gamma(t)) v \\ &\quad = \int_\Omega g(t) v \\ &\quad \forall \, \text{admissible } v, \quad \text{a.e. in } (0,T) \\ \text{ph.d.} &\quad \partial_t \chi_\varepsilon - \Delta \chi_\varepsilon + \xi_\varepsilon + \sigma'(\chi_\varepsilon) = -\frac{1}{\vartheta_\varepsilon} \\ &\quad \text{Neumann b.c. for } \chi \\ &\quad \vartheta_\varepsilon(0) = \vartheta_0, \quad \chi_\varepsilon(0) = \chi_0 \end{split}$$

GM ______ 13

14 CGRS
Joint paper with
P. Colli, E. Rocca, G. Schimperna (Pavia)
in preparation
 assumptions as general as possible
• Neumann conditions for u

Assumptions on α as above

$$\begin{array}{lll} \alpha(\vartheta) \approx -1/\vartheta & (\vartheta \to 0^+) \\ \alpha(\vartheta) & \text{``between''} & \ln \vartheta \text{ and } \vartheta & (\vartheta \to +\infty) \\ & \stackrel{\uparrow}{d=1} & \stackrel{\uparrow}{d=0} & \end{array}$$

Further assumption, unfortunately

$$D(\beta) = \mathbb{R} \quad \text{and} \quad \text{growth conditions at infinity}$$
 in particular, no constraints on
 χ

15	CGRS	
•	Existence (third type converges to Neumann)	
•	Improvement of the uniqueness proof: uniqueness of the nonsmooth solution (it works also for other b.c.)	
•	Regularity and uniqueness among smooth sol's (as in GM)	
Cor	nvergence and existence	
•	approximate the Neumann condition with third type b.c.	
•	a priori estimates and weak compactness	
•	strong compactness and usual monotonicity methods	
•	tricky point: main a priori estimate	
Nev	v uniqueness proof	
•	modification of previous arguments	
•	assumptions on ℓ furtherly reinforced	

CGRS _

_____ 15

Idea for the main a priori estimate

Recall

$$r^{2}\alpha'(r) = 1 + o(1) \quad \text{as } r \to 0^{+}$$

$$\alpha(r) = -\frac{1}{r} + \ell(r)$$

$$\ell(r) = o(1/r) \quad \text{as } r \to 0^{+}$$

$$r^{d}\alpha'(r) = c_{\infty} + o(1) \quad \text{as } r \to +\infty$$

$$0 \le d \le 1$$

 $\Omega \subset \mathbb{R}^3$ open, bounded, connected, smooth

$$\Gamma = \partial \Omega, \quad Q = \Omega \times (0, T)$$

$$V = H^1(\Omega) \hookrightarrow H = L^2(\Omega) \hookrightarrow V'$$

$$H_n^2 = \left\{ v \in H^2(\Omega) : \ \partial_n v = 0 \right\}$$

reasonable assumptions on data

$$\begin{split} &\vartheta_{\varepsilon} \in L^{\infty}(0,T;H) \cap H^{1}(0,T;V') \cap \dots \\ &\chi_{\varepsilon} \in L^{2}(0,T;H_{n}^{2}) \cap H^{1}(0,T;H) \\ &u_{\varepsilon} \in L^{2}(0,T;V), \quad \xi_{\varepsilon} \in L^{2}(Q) \\ &\vartheta_{\varepsilon} > 0 \quad \text{a.e. in } Q, \quad 1/\vartheta_{\varepsilon} \in L^{2}(0,T;V) \\ &u_{\varepsilon} = \alpha(\vartheta_{\varepsilon}), \quad \xi_{\varepsilon} \in \beta(\chi_{\varepsilon}) \quad \text{a.e. in } Q \end{split}$$

e.b.
$$\begin{split} \langle \partial_t (\vartheta_\varepsilon(t) + \chi_\varepsilon(t)), v \rangle + \int_\Omega \nabla u_\varepsilon(t) \cdot \nabla v \\ + \varepsilon \int_\Gamma u_\varepsilon(t) v \\ = \int_\Omega g(t) v + \int_\Gamma h(t) v \quad \forall \, v \in V, \quad \text{a.e. in } (0,T) \end{split}$$
 ph.d.
$$\partial_t \chi_\varepsilon - \Delta \chi_\varepsilon + \xi_\varepsilon + \sigma'(\chi_\varepsilon) = -\frac{1}{\vartheta_\varepsilon} \quad \text{a.e. in } Q \\ \vartheta_\varepsilon(0) = \vartheta_0, \quad \chi_\varepsilon(0) = \chi_0 \end{split}$$

Limit problem:

same regularity and similar equations with $\varepsilon=0$ in (e.b.)

$$\int_{0}^{t} (e.b.) \Big|_{t=s, v=\vartheta_{\varepsilon}(s) + u_{\varepsilon}(s) - \text{cnst}} ds$$

$$+ \int_{Q_{t}} (\text{ph.d.}) \times \partial_{t} \chi_{\varepsilon} dx ds$$

where $Q_t = \Omega \times (0, t)$.

• main terms (lhs)

$$\begin{split} &\frac{1}{2} \int_{\Omega} |\vartheta_{\varepsilon}(t)|^2 + \int_{\Omega} \widehat{\alpha}(\vartheta(t)) & \left(\widehat{\alpha}' = \alpha\right) \\ &+ \int_{Q_t} \nabla u_{\varepsilon} \cdot \nabla \vartheta_{\varepsilon} + \int_{Q_t} |\nabla u_{\varepsilon}|^2 \\ &+ \int_{Q_t} |\partial_t \chi_{\varepsilon}|^2 + \frac{1}{2} \int_{\Omega} |\nabla \chi_{\varepsilon}(t)|^2 + \int_{\Omega} j(\chi_{\varepsilon}(t)) \end{split}$$

ullet to be compensated (don't worry)

$$\int_{Q_t} \partial_t \chi_{\varepsilon} u_{\varepsilon} \quad \text{(lhs)} \qquad \text{and} \qquad - \int_{Q_t} \frac{\partial_t \chi_{\varepsilon}}{\vartheta_{\varepsilon}} \quad \text{(rhs)}$$

• "source" terms and "easy" terms (rhs)

• Source terms on the right hand side

$$\int_{Q_t} gv + \int_{\Gamma \times (0,t)} hv \qquad (v = \vartheta_{\varepsilon} + u_{\varepsilon} - \text{cnst})$$

trouble !!!

Trouble 1

$$\int_{\Gamma\times(0,t)}h\vartheta_\varepsilon$$

The left hand side can help just with

$$\frac{1}{2} \int_{\Omega} |\vartheta_{\varepsilon}(t)|^{2} + \int_{\Omega} \widehat{\alpha}(\vartheta(t))
+ \int_{Q_{t}} \nabla u_{\varepsilon} \cdot \nabla \vartheta_{\varepsilon} + \int_{Q_{t}} |\nabla u_{\varepsilon}|^{2}$$

Lemma. Assume

$$v \in L^2(\Omega), \quad v > 0, \quad \text{and} \quad \nabla \alpha(v) \in L^2(\Omega)^3$$

and set

$$d_{\bullet} = \frac{4}{1+3d} \quad \text{for} \quad 0 \le d \le 1.$$

Then the trace of v belongs to $L^{d_{\bullet}}(\Gamma)$ and

$$||v||_{L^{d_{\bullet}}(\Gamma)} \le \delta ||\nabla \alpha(v)||_{H}^{2} + c_{\delta} \left(1 + ||v||_{H}^{2}\right)$$

for any $\delta > 0$ and some $c_{\delta} = c(\delta, \Omega, \alpha)$.

Proof. Use the Gagliardo trace theorem and the Hölder and Sobolev inequalities.

So, reasonable assumptions on h yield $(h \in L^{\infty}(\Gamma \times (0,T)))$ works for any $d \in [0,1]$

$$\int_{\Gamma \times (0,t)} h \vartheta_{\varepsilon} \le \delta \int_{Q_t} |\nabla u_{\varepsilon}|^2 + c_{\delta} \int_{Q_t} |\vartheta_{\varepsilon}|^2 + c_{\delta}$$

and this can be controlled by the left hand side.

Trouble 2

$$\int_{Q_t} g u_{\varepsilon} + \int_{\Gamma \times (0,t)} h u_{\varepsilon} \leq c(g,h) \, \|u_{\varepsilon}\|_{L^2(0,T;V)}$$

with the **full** V-norm, while the l.h.s. contains only the **seminorm**. So, we have to be careful.

Setting for convenience

$$\langle f(t),v\rangle := \int_{\Omega} g(t)v + \int_{\Gamma} h(t)v \quad \text{for} \quad v \in V$$

our trouble becomes

$$\int_0^t \langle f(s), u_{\varepsilon}(s) \rangle \ ds$$

We are going to use the Poincaré inequality

$$\|u_{\varepsilon}(t) - m_{\varepsilon}(t)\|_{V}^{2} \le c \int_{\Omega} |\nabla u_{\varepsilon}(t)|^{2}$$

where m_{ε} is the mean value

$$m_{\varepsilon}(t) = \int_{\Omega} u_{\varepsilon}(t)$$

We split and estimate our integral this way

$$\begin{split} & \int_0^t \left\langle f(s), u_\varepsilon(s) \right\rangle \, ds \\ & = \int_0^t \left\langle f(s), u_\varepsilon(s) - m_\varepsilon(s) \right\rangle \, ds \\ & + \int_0^t m_\varepsilon(s) \left\langle f(s), 1 \right\rangle \, ds \\ & \leq \delta \int_{Q_t} |\nabla u_\varepsilon|^2 + c_\delta \, \|f\|_{L^2(0,T;V')}^2 \\ & + \|f\|_{L^\infty(0,T;V')} \, \|1\|_V \int_0^t |m_\varepsilon(s)| \, ds \end{split}$$

(even better...)

We have to estimate the last integral

We split the mean value this way

$$\begin{split} m_{\varepsilon}(t) &= \int_{\Omega} u_{\varepsilon}(t) = \int_{\Omega} \alpha(\vartheta_{\varepsilon}(t)) \\ &= -\int_{\Omega} \frac{1}{\vartheta_{\varepsilon}(t)} + \int_{\Omega} \ell(\vartheta_{\varepsilon}(t)) \end{split}$$

Hence (forget the remainder, please)

$$\int_0^t |m_{\varepsilon}(s)| \, ds \le \int_0^t \left(\int_{\Omega} \frac{1}{\vartheta_{\varepsilon}(s)} \right) ds + \dots$$

The last mean value is computed via (ph.d.)

$$-\frac{1}{\vartheta_{\varepsilon}} = \partial_t \chi_{\varepsilon} - \Delta \chi_{\varepsilon} + \xi_{\varepsilon} + \sigma'(\chi_{\varepsilon})$$

Take the mean value and use $\partial_n \chi = 0$

$$\int_{\Omega} \frac{1}{\vartheta_{\varepsilon}} \leq c \int_{\Omega} |\partial_t \chi_{\varepsilon}| + c \int_{\Omega} |\xi_{\varepsilon}| + c \int_{\Omega} (1 + |\chi_{\varepsilon}|)$$

Finally integrate over (0, t)

$$\begin{split} & \int_0^t \left(\int_{\Omega} \frac{1}{\vartheta_{\varepsilon}(s)} \right) ds \\ & \leq \delta \int_{Q_t} |\partial_t \chi_{\varepsilon}|^2 + c_{\delta} + c \int_{Q_t} (1 + |\chi_{\varepsilon}|^2) \\ & + c \int_{Q_t} |\xi_{\varepsilon}| \qquad (\text{recall} \quad \xi_{\varepsilon} \in \beta(\chi_{\varepsilon})) \end{split}$$

Everything works but the last integral. It should be controlled by the term

$$\int_{\Omega} j(\chi_{\varepsilon}(t))$$

on the l.h.s. We need the further assumption

$$|s| \le c (1 + j(r)) \quad \forall r \in \mathbb{R} \quad \forall s \in \beta(r)$$

in order to use Gronwall.

Uniqueness proof

e.b.
$$\langle \partial_t (\vartheta(t) + \chi(t)), v \rangle + \int_{\Omega} \nabla u_{\varepsilon}(t) \cdot \nabla v$$

$$= \int_{\Omega} g(t)v + \int_{\Gamma} h(t)v \quad \forall \, v \in V, \quad \text{a.e. in } (0,T)$$
 ph.d. $\partial_t \chi - \Delta \chi + \xi + \sigma'(\chi) = -\frac{1}{\vartheta} \quad \text{a.e. in } Q$
$$\vartheta(0) = \vartheta_0, \quad \chi(0) = \chi_0$$

Integrate the e.b. in t

i.e.b.
$$\int_{\Omega} (\vartheta + \chi) v + \int_{\Omega} \nabla \left(\int_{0}^{t} u \right) \cdot \nabla v = \langle \text{known}, v \rangle$$

Write eqn's for two solution and take the difference. I set $\vartheta = \vartheta_1 - \vartheta_2$, etc., or write diff $\{\ldots\}$. Then

$$\begin{split} & \delta \, \mathbf{i.e.b.} & \quad \int_{\Omega} \vartheta v + \int_{\Omega} \chi v + \int_{\Omega} \nabla \left(\int_{0}^{t} u \right) \cdot \nabla v = 0 \\ & \delta \, \mathbf{ph.d.} & \quad \partial_{t} \chi - \Delta \chi + \xi + \mathrm{diff} \{ \sigma'(\chi_{i}) \} = \mathrm{diff} \{ -1/\vartheta_{i} \} \end{split}$$

Now

$$\int_0^t \left(\delta \, \text{i.e.b.}\right)(\mathbf{s}) \bigg|_{\mathcal{V} = u(s)} \, ds + \int_{Q_t} \left(\delta \, \text{ph.d.}\right) \times \chi$$

We obtain

$$\begin{split} &\int_{Q_t} \vartheta \, u + \int_{Q_t} \chi u + \frac{1}{2} \int_{\Omega} \left| \nabla \int_0^t u \right|^2 \\ &\quad + \frac{1}{2} \int_{\Omega} |\chi(t)|^2 + \int_{Q_t} |\nabla \chi|^2 + \int_{Q_t} \xi \chi \\ &= \int_{Q_t} \mathrm{diff} \{-1/\vartheta_i\} \chi - \mathrm{easy \ term} \end{split}$$

Two possibilities

use
$$u$$
 and write $\vartheta_i = \alpha^{-1}(u_i)$
use ϑ and write $u_i = \alpha(\vartheta_i)$

Previous argument (CLS and GM): use u. This leeds to the integral

$$\int_{Q_t} (1 + u_1^2 + u_2^2) \chi^2$$

Playing with Hölder, one sees that Gronwall works with smooth u_i , namely

$$u_i \in L^{\infty}(0,T;L^6(\Omega))$$

Such a smoothness needs a regularity result. Assuming just the first reinforcement

$$r^2 \alpha'(r) = 1 + O(r)$$
 as $r \to 0^+$

and the data to be smoother, one proves

$$u_i \in L^{\infty}(0,T;V)$$

and uses the 3D Sobolev inclusion $V \subseteq L^6(\Omega)$

Use ϑ , instead

Recall

$$u_i = \alpha(\vartheta_i)$$
 and $\alpha(r) = -\frac{1}{r} + \ell(r)$

Reinforce a little more, namely

 ℓ Lipschitz continuous near 0

whence ℓ globally Lipschitz continuous.

$$\int_{Q_t} \vartheta \, u + \underbrace{\int_{Q_t} \chi u}_{(1)}$$

$$+ \frac{1}{2} \int_{\Omega} |\chi(t)|^2 + \int_{Q_t} |\nabla \chi|^2 + \dots$$

$$= \underbrace{\int_{Q_t} \operatorname{diff} \{-1/\vartheta_i\} \chi + \dots}_{(2)}$$

Compensate (1) and (2) and use Lipschitz

$$\begin{split} & \int_{Q_t} \vartheta \, u + \frac{1}{2} \int_{\Omega} |\chi(t)|^2 + \int_{Q_t} |\nabla \chi|^2 \\ & \leq \int_{Q_t} |\operatorname{diff}\{\ell(\vartheta_i)\}||\chi| + \dots \\ & \leq c \int_{Q_t} |\vartheta||\chi| + \dots \end{split}$$

We have

$$\vartheta u = \vartheta \operatorname{diff} \{\alpha(\vartheta_i)\} \ge \delta_0 \frac{\vartheta^2}{1 + \vartheta_1^d + \vartheta_2^d}$$

Hence we use the elementary inequality

$$|\vartheta||\chi| \leq \frac{\delta_0}{2} \, \frac{\vartheta^2}{1 + \vartheta_1^d + \vartheta_2^d} + \frac{1}{2\delta_0} \, (1 + \vartheta_1^d + \vartheta_2^d) \chi^2$$

and have

$$\begin{split} &\frac{\delta_0}{2} \int_{Q_t} \frac{\vartheta^2}{1 + \vartheta_1^d + \vartheta_2^d} + \frac{1}{2} \left\| \chi(t) \right\|_H^2 + \int_{Q_t} |\nabla \chi|^2 \\ &\leq c \int_{Q_t} (1 + \vartheta_1^d + \vartheta_2^d) \chi^2 \end{split}$$

Then OK if d = 0.

Assume $0 < d \le 1$. We still want to apply Gronwall.

CGRS 29

Write

$$\int_{Q_t} \vartheta_i^d \chi^2 = \int_0^t \int_{\Omega} \vartheta_i^d \chi \chi$$

and play with Hölder

$$p,q\geq 1$$
 and $\frac{1}{p}+\frac{2}{q}=1$
$$p:=\frac{2}{d}\in [2,\infty) \text{ and } q:=\frac{4}{2-d}\in (2,4]$$

Then

$$\begin{split} & \int_{Q_t} \vartheta_i^d \chi^2 \leq \int_0^t \left\| \vartheta_i^d \right\|_{L^p(\Omega)} \left\| \chi \right\|_{L^q(\Omega)}^2 \\ & = \int_0^t \left\| \vartheta_i \right\|_H^d \left\| \chi \right\|_{L^q(\Omega)}^2 \leq c \int_0^t \left\| \chi \right\|_{L^4(\Omega)}^2 \end{split}$$

since $\vartheta_i \in L^{\infty}(0,T;H)$ and $q \leq 4$. The compact embedding $V \subset L^4(\Omega)$ yields

$$||v||_{L^4} \le \delta ||\nabla v||_H + c_\delta ||v||_H$$

and we obtain

$$\int_{Q_t} (\vartheta_1^d + \vartheta_2^d) \chi^2 \leq \frac{1}{2} \int_{Q_t} |\nabla \chi|^2 + C \int_0^t \left\|\chi\right\|_H^2$$

Cahn-Hilliard type dynamics

$$\partial_t(\vartheta + \chi) - \Delta\alpha(\vartheta) = g$$

$$\partial_t \chi - \Delta w = 0$$

$$w \in -\Delta \chi + \partial j(\chi) + \sigma'(\chi) - \frac{1}{\vartheta_c} + \frac{1}{\vartheta}$$

homogeneous Neumann b.c. for χ and w some b.c. for either ϑ or u initial conditions for ϑ and χ

with α as **before** (essentially)

• Main difference in the a priori estimates

some
$$\|\cdot\|_H$$
 replaced by $\|\cdot\|_{V'}$

- existence result for the third type problem for u $(0 \le d < 1, \text{ with A. Marson})$
- existence for the Dirichlet problem should work as in GM
- ullet uniqueness works as before

$$||v||_{L^4} \le \delta ||\nabla v||_H + c_\delta ||v||_{V'}$$

• dealing with Neumann conditions... (hope)

In preparation