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1 General equations

Energy balance for phase transition:

∂te + div q = known source term (1)

where
e = ϑ + χ internal energy

(coefficients = 1)
ϑ relative temperature
χ order parameter
q heat flux

Then, (1) becomes

∂t(ϑ + χ) + div q = known source term (2)

We need two more equations

relationship between q and ϑ (3)
relationship between ϑ and χ (4)

and initial and boundary conditions.
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2 Stefan problem

The classical Stefan problem is derived by the equations

∂t(ϑ + χ) + div q = known term (energy balance)

q = −k0∇ϑ (Fourier law)

χ ∈ H(ϑ)

where k0 = constant > 0 and

H =

{
the Heaviside graph

the sign graph

according to our convenience.
We obtain the well–knonw problem

∂t(ϑ + χ)− k0∆ϑ = known term
χ ∈ H(ϑ)
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3 Relaxed models

Rewrite the Stefan problem in the form

∂t(ϑ + χ)− k0∆ϑ = known term
H−1(χ) 3 ϑ (1)

Replace (1) by a differential equation

µ∂tχ + H−1(χ) 3 ϑ (2)
phase relaxation model

µ∂tχ− ν∆χ + H−1(χ) 3 ϑ (3)
phase field model (i.e., with diffusion)

where µ, ν are small parameters.
Alternative models require

W ′(χ) in place of H−1(χ)

where W is a (W−shaped) double well potential. Typical case:

W (r) =
c

4
(r2 − 1)2 (c > 0 constant)

W ′(r) = cr3 − cr
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4 Relaxed models

More generally

µ∂tχ

[
− ν∆χ

]
+ H−1(χ)

[
or W ′(χ)

]
3 ϑ︸ ︷︷ ︸y︷ ︸︸ ︷

µ∂tχ

[
− ν∆χ

]
+ β(χ)− γ(χ) 3 ϑ

where β maximal monotone graph in IR × IR and γ smooth
function. Examples:

β = H−1 and γ = 0 (standard Stefan case)
β(r) = cr3 and γ(r) = cr (standard double well case)

For instance, the standard phase field model is

∂t(ϑ + χ)− k0∆ϑ = known term
µ∂tχ− ν∆χ + W ′(χ) = ϑ

where W is a standard double well potential.

Wide literature, starting with

Visintin and Frémond–Visintin (phase relaxation)
Caginalp and Fix (phase field)

See, e.g., the book “Models of phase transition” by Visintin.

The framework for Stefan problems and phase field systems is
“nonlinear parabolic PDE’s”.

Relaxed models 4



5 Heat flux with memory

Recall the Fourier law for the heat flux

q = −k0∇ϑ, k0 = constant > 0 (1)

Introduce memory (linearly):

either q(x, t) = q0(x, t)− k0∇ϑ(x, t)− (k ∗ ∇ϑ)(x, t) (2)
Coleman–Gurtin law

or q(x, t) = q0(x, t)− (k ∗ ∇ϑ)(x, t) (3)
Gurtin–Pipkin law

where (a ∗ b)(t) =
∫ t

0

a(t− s) b(s) ds, in general

q0 = past history

k = function of time, only

Typical memory kernel: k(t) =
c

τ
exp(−t/τ) (t > 0)

where τ > 0 small parameter. It comes from

τ∂tq + q = −c∇ϑ Cattaneo–Maxwell law

Coupling with an equation for the order parameter, we obtain
a system involving both

PDE’s and integro–differential equations.
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6 Heat flux with memory

The energy balance

∂t(ϑ + χ) + div q = known source term

becomes

∂t(ϑ + χ)− k0∆ϑ−∆(k ∗ ϑ) = known Coleman–Gurtin

∂t(ϑ + χ)−∆(k ∗ ϑ) = known Gurtin–Pipkin

If k is a decreasing exponential, we have

Coleman–Gurtin −→ parabolic equation
Gurtin–Pipkin −→ hyperbolic equation

with respect to ϑ.

Review reference:

Joseph–Preziosi, Heat waves, Rev. Modern Phys. (1989).
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7 Results

1) Existence, uniqueness, regularity for

∂t(ϑ + χ)
[
−∆ϑ

]
−∆(k ∗ ϑ) = known

µ∂tχ− ν∆χ + β(χ)− γ(χ) 3 ϑ

and for some generalization of this system
(further nonlinear terms).

2) Asymptotic analysis as either µ or ν tend to 0: degenerate
limit problems.

3) Asymptotic analysis as k tends to the Dirac mass. In this
case, the limit problem is parabolic, namely

∂t(ϑ + χ)−∆ϑ = known
µ∂tχ− ν∆χ + β(χ)− γ(χ) 3 ϑ

4) Long time behavior of the solution.

5) Different relaxation terms, e.g.

∂t(ϑ + h ∗ χ)−∆(k ∗ ϑ) = known[
µ∂tχ− ν∆χ

]
+ β(χ)− γ(χ) 3 ϑ

where h is a memory kernel too.
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Luterotti
Showalter
Walkington
Yin
G.G.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Penrose–Fife with memory

(strongly nonlinear in ϑ)

Conserved phase field with memory

(fourth order equation for χ)

References 8



9 Main assumptions

Two types of assumptions on k:

1) k a kernel of positive type, i.e.

k ∈ L1
loc[0,+∞) (at least) and∫ t

0

(k ∗ v)(s) v(s) ds ≥ 0 ∀t > 0, ∀v ∈ L2(0, t)

 (1)

2) k is smooth and
k(0) > 0. (2)

Any decreasing exponential fulfills both properties. Sufficient
conditions for (1) are indeed:

k is positive, decreasing, and convex.
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10 Gurtin–Pipkin and hyperbolicity

The modified heat equation becomes

∂t(ϑ + χ)−∆(k ∗ ϑ) = known (1)

Assume k smooth and introduce

u(x, t) := (1 ∗ ϑ)(x, t) =
∫ t

0

ϑ(x, s) ds (freezing index).

Then (1) becomes

∂2
t u−∆(k ∗ ∂tu) = known− ∂tχ

On the other hand, we have

k ∗ ∂tu = ∂t(k ∗ u) = k(0)u + k′ ∗ u

whence

∂2
t u− k(0)∆u = known− ∂tχ−∆(k′ ∗ u).

Therefore:

k(0) > 0 =⇒ hyperbolic principal part
k smooth =⇒ ∆(k′ ∗ u) ∼ lower order term

Similar behavior with respect to the new state variable

w = u + 1 ∗ χ = 1 ∗ (ϑ + χ).

Gurtin–Pipkin and hyperbolicity 10



11 From Gurtin–Pipkin to standard

Assume
kε → Dirac mass as ε → 0.

Hence (formally)

∂t(ϑε + χε)−∆(kε ∗ ϑε) = fy
∂t(ϑ + χ)−∆ϑ = f

and

µ∂tχε − ν∆χε + β(χε)− γ(χε) 3 ϑεy
µ∂tχ− ν∆χ + β(χ)− γ(χ) 3 ϑ

Goal: make this argument rigorous.
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12 From Gurtin–Pipkin to standard

Theorem (Colli-G-Grasselli). The above result holds if

kε(t) =
1
ε

exp(−t/ε) (1)

More generally, we can add a perturbation term tending to 0
in an appropriate norm.

Idea for the kernel (1).

Choose

wε := 1 ∗ (ϑε + χε) and w := 1 ∗ (ϑ + χ)

as state variables. Then

∂2
t wε −∆(kε ∗ wε) = . . . (2)

∂tw −∆(1 ∗ w) = . . . (3)

where χε and χ enter the rhs and have to be treated using the
second equations.

Apply the operator v 7→ εv + 1 ∗ v to (2):

ε∂2
t wε + ∂twε −∆

(
(εkε + 1 ∗ kε) ∗ wε

)
= . . .

and observe that (1) implies

εkε + 1 ∗ kε = 1.

Hence we obtain

ε∂2
t wε + ∂twε −∆(1 ∗ wε) = . . .

and we can compare with (3).
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13 Coleman–Gurtin and parabolicity

Assume the Coleman–Gurtin law

q(x, t) = q0(x, t)−∇ϑ(x, t)− (k ∗ ∇ϑ)(x, t)

assume k of positive type∫ t

0

(k ∗ v)(s) v(s) ds ≥ 0 ∀t > 0, ∀v ∈ L2(0, t)

and write the modified heat equation (no χ):

∂tϑ−∆ϑ−∆(k ∗ ϑ) = known

Multiply by ϑ and integrate over Ω× (0, t)

1
2

∫
Ω

|ϑ(t)|2 +
∫ t

0

∫
Ω

|∇ϑ|2 +
∫

Ω

∫ t

0

(k ∗ ∇ϑ) · ∇ϑ︸ ︷︷ ︸
≥ 0

= . . .

Thus, the standard parabolic estimate still holds.

Goal: Try and do the same for Stefan problems.
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14 Stefan problem with memory

It is better to use e = ϑ + χ as state variable.

∂te−∆ϑ−∆(k ∗ ϑ) = known (1)
e ∈ α(ϑ) or ϑ ∈ α−1(e)
Standard case: α = identity + Heaviside

Try and multiply by either ϑ or e. Set

α = ∂ϕ whence α−1 = ∂ϕ∗

and observe that (formally)

ϑ ∂te = α−1(e) ∂te = ∂ϕ∗(e) ∂te = ∂tϕ
∗(e).

Hence, multiplying (1) by ϑ and e∫
Ω

ϕ∗(e(t)) +
∫ t

0

∫
Ω

|∇ϑ|2 +
∫

Ω

∫ t

0

(k ∗ ∇ϑ) · ∇ϑ

︸ ︷︷ ︸
≥ 0

= . . .

1
2

∫
Ω

|e(t)|2 +
∫ t

0

∫
Ω

∇ϑ · ∇e

︸ ︷︷ ︸
≥ 0

+
∫

Ω

∫ t

0

(k ∗ ∇ϑ) · ∇e

︸ ︷︷ ︸
?

= . . .

Problems: Must e be L2(Ω)− valued?
What about the boundary terms (integration by parts)?

Stefan problem with memory 14



15 Stefan problem with memory

The most difficult case (among standard ones) is the following:
keep α as general as possible (maximal monotone) and assume
third type boundary condition, i.e.

q · n = ϑ− ϑΓ on Γ := ∂Ω

where ϑΓ is prescribed, i.e.

∂n(ϑ + k ∗ ϑ) + ϑ = ϑΓ (2)

Damlamian–Kenmochi: (2) and any α, but no memory
Aizicovici–Colli–Grasselli: any α, but Dirichlet b.c.
Colli–Grasselli: (2), but α sublinear
Barbu–Colli–G–Grasselli: general case

Theorem (B-C-G-G). Main assumption: k smooth.
i) Existence and uniqueness for any maximal monotone α.
ii) e ∈ Cw([0,+∞);L1(Ω)) and e ∈ α(ϑ) a.e. in Ω × (0,+∞)
if α is everywhere defined.

Main further assumption: k ∈ L1(0,+∞) of positive type.
iii) Long time behavior for ϑ if α−1 is Lipschitz.
iv) Long time behavior for e under stronger assumptions.
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16 Stefan problem with memory

i) Idea for existence and uniqueness. Recall:

∂te−∆ϑ−∆(k ∗ ϑ) = known
∂n(ϑ + k ∗ ϑ) + ϑ = ϑΓ

Variational formulation: for any v ∈ H1(Ω)

〈∂te, v〉+
∫

Ω

∇ϑ · ∇v +
∫

Γ

ϑv︸ ︷︷ ︸
〈Aϑ, v〉

+
∫

Ω

∇(k ∗ ϑ) · ∇v︸ ︷︷ ︸
〈B(k ∗ ϑ), v〉

= r.h.s.

Hence, the abstract equation in H1(Ω)′

e′ + Aϑ + B(k ∗ ϑ) = some f (3)

coupled with
generalization of e ∈ α(ϑ) (4)

meaningful if e is just H1(Ω)′ − valued
and equivalent to e ∈ α(ϑ) a.e. if e is L2(Ω)− valued.

If k = 0, Damlamian–Kenmochi transform (3–4) into

e′ + ∂J(e) 3 f

in the framework of H1(Ω)′, where

J : H1(Ω)′ → (−∞,+∞]

is a convex l.s.c. functional related to α.
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17 Stefan problem with memory

For a general (smooth) k, we argue as follows

e′ + Aϑ + B(k ∗ ϑ) = f

Aϑ + (kBA−1) ∗Aϑ = −e′ + f (solving for Aϑ)
Aϑ = G(e′) = −e′ + F(e)

e′ + Aϑ = F(e)

where F(e) contains some convolution, and couple this equa-
tion with the generalized condition e ∈ α(ϑ) essentially as
Damlamian–Kenmochi do. We obtain the integrodifferential
abstract equation in H1(Ω)′

e′ + ∂J(e) 3 F(e)

and use a fix point argument in the space C0([0, T];H1(Ω)′).

e is an H1(Ω)′ − valued generalized solution.

After (ii), previous form of the problem, whence:

k of positive type
↓

a priori estimates
↓

long time behavior
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18 Stefan problem with memory

ii) Idea for solution defined a.e. to

e′ + ∂J(e) 3 F(e)

In simpler situations e is L2(Ω)− valued. This is not our case.

D(α) = IR −→ modified Brézis argument

H−1(Ω) ∩ L1(Ω) −→ H1(Ω)′ ∩ L1(Ω)

As H1(Ω)′ ∩ L1(Ω) is meaningless, we define:

u ∈ H1(Ω)′ belongs to H1(Ω)′ ∩ L1(Ω)
⇐⇒

〈u, v〉 =
∫

Ω

wv ∀v ∈ H1(Ω) ∩ L∞(Ω)

for some (unique) w ∈ L1(Ω) (we set w = u).

Moreover, we introduce

J̃(u) =


∫
Ω

ϕ∗(u) if u ∈ H1(Ω)′ ∩ L1(Ω)
and ϕ∗(u) ∈ L1(Ω)

+∞ otherwise for v ∈ H1(Ω)′.

Using

D(α) = IR =⇒ lim
|r|→+∞

ϕ∗(r)
|r|

= +∞

we prove that J̃ is l.s.c. and that J = J̃ .
Hence

J(e(t)) ≤ C becomes
∫

Ω

ϕ∗(e(t)) ≤ C

This yields e(t) ∈ H1(Ω)′∩L1(Ω) and weak L1(Ω)−continuity.
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