Analisi Matematica 2

Prova scritta	Cognome e nome (stampatello chiaro)	C.L. (Mat/Fis)
28/06/11		

Una e una sola è la risposta esatta. Annerire la casella scelta così: L'esercizio contrassegnato con • è diverso per i matematici e i fisici. Punti per ogni risposta: Esatta = 3, Bianca = 0, Errata = -1. Tempo a disposizione: 1 ora e 45 minuti.

- **1.** Sia $\psi: \mathbb{R} \to \mathbb{R}$ di classe C^{∞} tale che $\psi^{(n)}(0) = 0$ per ogni $n \geq 0$. Allora [a] ψ è costante; b ψ è limitata; c esiste $c \in \mathbb{R}$ tale che $3^6\psi^{(6)}(c) = 6!\psi(3)$; d esiste $c \in \mathbb{R}$ tale che $\psi(-3) = -3^4\psi^{(4)}(c)/4!$.
- **2. Matematici:** Sia $f(x) = \sum_{n=0}^{\infty} (-1)^n x^{2n+2} / n!$ per $x \in \mathbb{R}$. Allora f(-1) vale a -1/e; b 1; c e; d 1/e.
- **3. Matematici:** Siano $\Omega = (\mathbb{R}^2 \setminus \{0\}) \times (0, +\infty)$ e $f: (0, +\infty) \to \mathbb{R}$ monotona. Per $(x,y,z)\in\Omega$ si ponga $\,\omega(x,y,z)=y(x^2+y^2)^{-1}\,dx-x(x^2+y^2)^{-1}\,dy+f(z)\,dz$. Allora a ω è esatta; b ω è localmente esatta; c la restrizione di ω a $(0,+\infty)^3$ è esatta se e solo se f è continua; $|\mathbf{d}| \Omega$ è semplicemente connesso.
 - **4.** Si ponga $f(x,y,z)=\cos x\cos y-z^n$ per $(x,y,z)\in\mathbb{R}^3$ e n>1 intero. Allora a per almeno un n, f ha almeno un punto di minimo locale; |b| se n è pari, ogni punto stazionario è di estremo locale; \boxed{c} per ogni n, il numero dei punti di massimo locale è finito; $|\mathbf{d}|$ nessun punto stazionario è di estremo locale se e solo se n è dispari.
 - **5.** Per r>0 si ponga $Q_r=\left\{(x,y)\in\mathbb{R}^2:\; |(x,y)|\leq r,\; y\geq |x|\right\}$ e sia $\varphi:(0,+\infty)\to\mathbb{R}$ data da $\varphi(t)=(\ln t)/\sqrt{t}$. Allora il numero reale $\ln 4^4-(1/\pi)\int_{Q_4\backslash Q_1}\varphi(x^2+y^2)\,dx\,dy$ vale a 2; b 1; c 3; d 4.
 - **6.** Se u è la soluzione globale del problema di Cauchy in avanti $u'(t) = 2e^{-u(t)}$ per ogni
 - $t \ge 0 \text{ e } u(0) = \ln 3$, allora $e^{u(3)}$ vale a 4; b 6; c 8; d 9. 7. Si ponga $A_r = \{(x,y) \in \mathbb{R}^2 : x^2 + (y^2/4) \le r^2\}$ e $B_r = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le r^2\}$ per r > 0. Allora la formula $\int_{A_2 \setminus A_1} \exp(x^2 + (y^2/4)) dx dy = \lambda \int_{B_2 \setminus B_1} \exp(x^2 + y^2) dx dy$ è corretta se λ vale a 1/2; b 4; c 1/4; d 2.
 - 8. Sia u_{α} la soluzione massimale del problema di Cauchy in avanti $u'(t) = t\sqrt{1 + u^2(t)}$, $u(0) = \alpha$, ove $\alpha > 0$. Allora a u_4 è globale e limitata; b u_3 non è globale;
 - **9.** Per $(z,t) \in \mathbb{R}^2$ sia $f(z,t) = \int_{[0,1]^2} \sin(x^2 y^3 z t) dx dy$. Allora $D_z f(0,1)$ vale a 1/12; |b| 1/20; |c| 1/2; |d| 1/3.
 - **10.** La funzione $\alpha(x) = \tanh(|x|^2)$, $x \in \mathbb{R}^2$, è a non differenziabile nell'origine; | b | convessa; | c | non limitata; | d | uniformemente continua.

spazio riservato alla commissione