Strumenti di Analisi Matematica di Base

Appello del giorno	Cognome e nome (stampatello chiaro)	C.L. (M/F)
26/09/05		

Una e una sola è la risposta esatta. Annerire la casella scelta così: \blacksquare Punti per ogni risposta: Esatta = 3, Bianca = 0, Errata = -1. Tempo a disposizione: 1 ora e 45 minuti.

- **1.** Sia $u: [0,T) \to \mathbb{R}$ di classe C^{∞} la soluzione massimale del problema di Cauchy $u'(t) = \sqrt{u^2(t) + 1} u(t)$ e u(0) = 0. Allora a $T < +\infty$; b u è crescente e limitata; c u è concava; d u è costante.
- **2.** Siano $A = \mathbb{R} \setminus [0,3]$ e $f: A \to \mathbb{R}$ continua. Allora a per ogni $c \in (\inf f, \sup f)$ l'equazione f(x) = c ha almeno una soluzione in A; b f almeno un punto di minimo assoluto; c f è integrabile in $A \cap [2,5]$; d f è limitata in $A \cap [4,6]$.
- **3.** Fra le funzioni $f: \mathbb{R} \to \mathbb{R}$ elencate quella uniformemente continua è data dalla formula $f(x) = \begin{bmatrix} a & \sin(x^4); & b \end{bmatrix} x^4 \arctan x; \begin{bmatrix} c & |\arctan x|^{1/3}; \\ d & x^4 \arctan(|x|^{1/3}). \end{bmatrix}$
- **4.** L'integrale $\int_0^{\pi/4} e^x \sin x \, dx$ vale a $e^{\pi/4}$; b $-e^{\pi/4}$; c -1/2; d 1/2. **5.** Sia $f(x) = \sin^3 x - \sinh^3 x$ per $x \in \mathbb{R}$. Allora a esiste un intorno di 0 in cui f
- **5.** Sia $f(x) = \sin^3 x \sinh^3 x$ per $x \in \mathbb{R}$. Allora a esiste un intorno di 0 in cui f decresce; b 0 è un punto di massimo relativo per f; c esiste un intorno di 0 in cui f cresce; d 0 è un punto di minimo relativo per f.
- **6.** Sia $f(x) = \int_0^1 \exp(xy^2) dy$ per $x \in \mathbb{R}$ e siano $a, b \in \mathbb{R}$ tali che f(x) = a + bx + o(x) per $x \to 0$. Allora b vale a 0; b 1/2; c 1/4; d 1/3.
- 7. La funzione $f: \mathbb{R} \to \mathbb{R}$ definita da $f(x) = x \sin x$ se $x \leq 0$ e da $f(x) = 2(\cosh x 1)$ se x > 0 risulta a di classe C^{∞} ; b di classe C^{3} e non di classe C^{4} ; c di classe C^{2} e non di classe C^{3} ; d limitata.
- **8.** Il volume dell'insieme $\{(x, y, z) \in \mathbb{R}^3 : y^2 + z^2 \le 1, \ 0 \le x \le 2, \ y^2 + z^2 \le 2 x\}$ vale $[a] 4\pi/3; \quad [b] 2\pi; \quad [c] 3\pi/2; \quad [d] 0.$
- 9. Sia $\{x_n\}$ una successione reale che ha una sottosuccessione convergente a 0. Allora a $\{x_n\}$ è limitata superiormente; b $\{\sinh x_n\}$ è infinitesima; c esistono infiniti interi n tali che $\cos x_n > 1/2$; d $\{\sinh x_n\}$ è convergente.
- **10.** Perché una funzione $f: \mathbb{R} \to \mathbb{R}$ di classe C^1 sia di classe C^2 è a sufficiente che f' sia convessa; b necessario che f' sia concava; c sufficiente che esista $g: \mathbb{R} \to \mathbb{R}$ continua tale che $f(x) = \int_0^x \left(\int_0^y g(t) \, dt \right) dy$ per ogni $x \in \mathbb{R}$; d necessario che f' sia lipschitziana.

spazio riservato alla commissione