Analisi B

Appello del giorno	Cognome e nome (stampatello chiaro)	C.L. (M/F)
18/09/06		

Una e una sola è la risposta esatta. Annerire la casella scelta così: Nell'esercizio • i matematici/fisici ignorino la parte SoloF [...] /SoloM [...] del testo. Punti per ogni risposta: Esatta = 3, Bianca = 0, Errata = -1. Tempo a disposizione: 1 ora e 45 minuti.

- 1. La lunghezza del grafico di $\cosh |_{[-1,0]}$ vale \boxed{a} $\sinh 1$; \boxed{b} $\cosh 1$; \boxed{c} $-\sinh 1$; $|\mathbf{d}| - \cosh 1$.
- **2.** Sia $f: \mathbb{R}^2 \to \mathbb{R}$ continua. Allora si ha $\int_1^e \left(\int_0^{\ln y} f(x,y) \, dx \right) dy = \int_0^1 \left(\int_{\alpha(x)}^{\beta(x)} f(x,y) \, dy \right) dx$ se, per ogni $x \in [0,1]$, $(\alpha(x), \beta(x))$ vale [a] $(0,e^x)$; [b] $(\ln x, 0)$; [c] $(0, \ln x)$; $|\mathbf{d}| (e^x, e)$.
- 3. Sia $f(x) = 1/(1+x^2)$ per $x \in \mathbb{R}$. Allora la serie di Taylor di f con centro in 0 a converge a f(x) solo se |x| è abbastanza piccolo; |b| converge a f(x) per ogni x; converge solo se x=0; d converge per ogni $x\in\mathbb{R}$, ma non a f(x) per almeno
- **4.** Il problema di Cauchy in avanti $u'(t) = u^2(t)(1+\sin^2(t^3))$ $(t \ge 0)$ e u(0) = 2 ha a una soluzione globale limitata; b una soluzione massimale non globale ma limitata; c una soluzione massimale non globale e non limitata; d una soluzione globale non limitata.
- **5.** Il limite $\lim_{n\to\infty} \int_0^1 \exp(-x^2/n) \, dx$ vale $\boxed{\mathbf{a}}$ 1; $\boxed{\mathbf{b}}$ 0; $\boxed{\mathbf{c}}$ π ; $\boxed{\mathbf{d}}$ e. **6.** Siano $f,g,h:\mathbb{R}\to\mathbb{R}$ tali che $h(x)=\max\{f(x),g(x)\}$ per ogni x. Allora h è a lipschitziana se f e g lo sono; b di classe C^1 se f e g lo sono; c concava se $f \in g$ lo sono; $|\mathbf{d}|$ monotona se $f \in g$ lo sono.
- 7. Sia SoloM [$u(t) = -t \sum_{n=0}^{\infty} t^n/(n+1)$ per |t| < 1] SoloF [$u : [0,1) \to \mathbb{R}$ la soluzione del problema di Cauchy $u'(t) = -\exp(-u(t))$, u(0) = 0]. Allora u(1/2) vale
 - **8.** Posto $C = \{(x, y, z) : x^2 + y^2 = 4, \ 0 \le z \le 1/2 \}$, l'integrale $\int_C z \sqrt{x^6 + x^4 y^2} \, dS$ vale $\boxed{\mathbf{a}} \quad \pi/3; \quad \boxed{\mathbf{b}} \quad \pi; \quad \boxed{\mathbf{c}} \quad 2\pi; \quad \boxed{\mathbf{d}} \quad \pi/9.$
 - **9.** Sia $f: \mathbb{R} \to \mathbb{R}$ data da $f(x) = x^2 \sin(1/x^2)$ se $x \neq 0$ e f(0) = 0. Allora $f \in \mathbb{R}$ a uniformemente continua; |b| lipschitziana; |c| discontinua in 0; d di classe C^1 ma non di classe C^2 .
- **10.** Sia $f(x,y) = x^7y^7$ per $(x,y) \in \mathbb{R}^2$. Allora a l'origine è un punto di massimo locale; f è convessa in un intorno di (1,-1); $\boxed{\mathbf{c}}$ esiste un punto minimo locale per f; non esiste alcun aperto non vuoto in cui f sia concava.

spazio riservato alla commissione