Analisi B

Appello del giorno	Cognome e nome (stampatello chiaro)	C.L. (M/F)
17/09/07		

Una e una sola è la risposta esatta. Annerire la casella scelta così:
Nell'esercizio • i matematici/fisici ignorino la parte SoloF [...]/SoloM [...] del testo.
Punti per ogni risposta: Esatta = 3, Bianca = 0, Errata = -1.
Tempo a disposizione: 1 ora e 45 minuti.

- 1. Posto SoloM $[f(x) = \sum_{n=0}^{\infty} x^{2n+4}/(n+1)!]$ SoloF $[f(x) = x^3 \sinh(|x|^{1/2})]$ per $x \in \mathbb{R}$, si ha che f [x] è convessa; [x] non è di classe [x] c è limitata; [x] è monotona.

 2. Sia $f: \mathbb{R}^2 \to \mathbb{R}$ data da $f(x,y) = (\underline{1} + y^2)(1 + x^2)^{-1}(1 + y^4)^{-1}$. Allora [x]
 - 2. Sia $f: \mathbb{R}^2 \to \mathbb{R}$ data da $f(x,y) = (1+y^2)(1+x^2)^{-1}(1+y^4)^{-1}$. Allora fa ha un punto di minimo assoluto; b ha 3 punti stazionari non di estremo locale;

 c ha esattamente un punto di massimo assoluto; ha due punti di massimo assoluto.
 - **3.** Sia $f: \mathbb{R}^2 \to \mathbb{R}$ di classe C^2 . Allora a f è convessa se $\det Hf \geq 0$ in \mathbb{R}^2 ; b f è convessa se $D_i^2 f \geq 0$ in \mathbb{R}^2 per i=1,2; se f è convessa, allora $D_i^2 f \geq 0$ in \mathbb{R}^2 per i=1,2; d se f è convessa, allora $D_i D_j f \geq 0$ in \mathbb{R}^2 per i,j=1,2.
 - **4.** Posto $\Gamma = \{e^{-\vartheta}(\cos \overline{\vartheta}, \sin \vartheta) : \vartheta \in \mathbb{R}\}$, sia $f : \Gamma \to \mathbb{R}$ data da $f(x) = |x|^2 + |x|^{-2}$. Allora f a non ha minimo assoluto; b ha minimo assoluto e min f = 1; c è limitata; ha uno e un solo punto di minimo assoluto.
 - **5.** Sia $f: \mathbb{R} \to \mathbb{R}$ continua. Perché il problema di Cauchy in avanti u'(t) = f(u(t)) e u(0) = 1 non ammetta alcuna soluzione globale è \blacksquare sufficiente che $f(y) \ge y^2 \ \forall y \in \mathbb{R}$; b necessario che esistano $\alpha, c > 0$ tali che $f(y) \ge \alpha y^2 c \ \forall y \in \mathbb{R}$; c sufficiente che f non sia lipschitziana; d necessario che f non sia di classe C^1 .
 - **6.** Dato il problema di Cauchy $u''(t) + 2u'(t) + u(t) = e^{3t}$, u(0) = 17/16, u'(0) = 3/16, sia $u: \mathbb{R} \to \mathbb{R}$ la sua soluzione globale. Allora $u(1) 2^{-4}e^3$ vale \boxed{a} 1/e; \boxed{b} -1/e; \boxed{e} 2/e; \boxed{d} 0.
 - 7. Sia Γ il grafico di $x \mapsto e^x$, $x \in [-1,1]$. Allora l'integrale $\int_{\Gamma} e^x (1+y^2)^{-1/2} ds(x,y)$ vale $a \sinh 1$; $b \cosh 1$; $a \cosh 1$; $c \cosh 1$; $c \cosh 1$; $c \cosh 1$.
 - 8. Sia $f: \mathbb{R} \to \mathbb{R}$ uniformemente continua. Allora a f è lipschitziana; b $x \mapsto x^{-1/2} f(x)$ è limitata in $[1, +\infty)$; \blacksquare $|f|^{1/2}$ è uniformemente continua; d f^2 è uniformemente continua.
 - **9.** Sia $f: \mathbb{R} \to \mathbb{R}$ data da $f(x) = x^2/2$ se $x \le 0$ e $f(x) = 1 \cos x$ se x > 0. Allora f è a di classe C^4 ma non C^5 ; di classe C^3 ma non C^4 ; c di classe C^2 ma non C^3 ; d di classe C^1 ma non C^2 .
 - **10.** L'area dell'insieme $B = \{(x,y) \in \mathbb{R}^2 : x^2 + |y|^{(1/2)(3+\operatorname{sign} x \operatorname{sign} y)} \le 1\}$, con la convenzione $\operatorname{sign} 0 = 0$, vale a $\pi/2 + 2/3$; b $\pi/4 + 4/3$; c $\pi + 2/3$; $\pi/2 + 4/3$.