Strumenti di Analisi Matematica di Base — 17/06/02

- ♠ Sia $u: \mathbb{R} \to \mathbb{R}$ di classe C^{∞} tale che $u''(t) + t^2u'(t) + tu(t) = 0 \quad \forall x \in \mathbb{R}$, u(0) = 0 e u'(0) = 1. Allora esiste un intorno dell'origine in cui u è
- ♦ crescente e concava
- ♠ Sia K l'insieme dei valori $k \in \mathbb{R} \setminus \{0\}$ tali che esista $u : \mathbb{R} \to \mathbb{R}$ di classe C^{∞} verificante $u''(t) = 4k^2u(t) \ \forall t \in \mathbb{R}$, u(0) = 0, u'(0) = 2 e u(1/2) = 1. Allora:
- $\Diamond K = \emptyset$
- \spadesuit Sia K l'insieme dei valori $k \in \mathbb{R}$ tali che la soluzione globale u del problema di Cauchy in avanti $u'(t) u(t) = e^{-3t}$, u(0) = k sia limitata in $[0, +\infty)$. Allora
- \diamondsuit K ha 1 elemento
- \spadesuit Sia A l'insieme dei valori $\alpha \in \mathbb{R}$ tali che $\lim_{x\to 0^+} x^{-1} (\sin x)^{2-\alpha^2} = 0$. Allora $\sup A$ vale
- \Diamond 1
- \spadesuit Il limite $\lim_{x\to 0} x^{-2} \int_0^x \sin s \, ds$ vale
- \Diamond 1/2
- \spadesuit Sia $f: \mathbb{R}^2 \to \mathbb{R}$ data dalla formula $f(x,y) = 2x^2 + 5y^2 + 2xy + 57$. Allora, per la funzione f, l'origine è
- ♦ un punto di minimo assoluto
- \spadesuit Siano $E=\left\{(x,y)\in\mathbb{R}^2:y\geq0,\ 1\leq x^2+y^2\leq4\right\},\ f:\mathbb{R}^2\to\mathbb{R}$ definita dalla formula $f(x,y)=x^2+y^2$ e $I=\int_E f(x,y)\,dx\,dy$. Allora
- $\Diamond I = 15\pi/4$
- \spadesuit L'integrale $\int_0^1 x^2 e^x dx$ vale
- $\Diamond e-2$
- \spadesuit Posto $E=(0,1)\times(0,1)$, sia $f:E\to\mathbb{R}$ definita dalla formula f(x,y)=xy. Allora \diamondsuit fè uniformemente continua
- ♠ Sia $u: (-1,1) \to \mathbb{R}$ di classe C^{∞} tale che $u(x) + \sin u(x) = 2x$ per ogni $x \in (-1,1)$ e u(0) = 0 e sia P il suo polinomio di Taylor di centro 0 e ordine 2. Allora P(1) vale
- \Diamond 1