Strumenti di Analisi Matematica di Base — 16/06/03

- \spadesuit Sia $f: [0,1] \to \mathbb{R}$ definita da $f(x) = x \ln \frac{1+x}{2}$ e siano $m = \inf f$ e $M = \sup f$.
- $\diamondsuit \quad \exists x_0 \in (0,1): \ f(x_0) = m$
- \Rightarrow Siano $f(x) = x^3 \exp(-3x^2/2)$, $x \in \mathbb{R}$, $e^{-\lambda} = e^{3/2} (\sup f \inf f)$. Allora λ vale \Rightarrow 2
- \spadesuit La funzione $x \mapsto \int_0^x \exp(-y^3) \, dy$, $x \in \mathbb{R}$, è
- ♦ crescente e concava
- \spadesuit Sia D l'intersezione del primo quadrante di \mathbb{R}^2 con la corona circolare di centro (0,0) e raggi 1 e 2 e sia $I=\int_D x^2\,dx\,dy$. Allora
- $\Diamond I > 2$
- \spadesuit Sia $f(x,y) = \exp(x^2 y^2)$, $(x,y) \in \mathbb{R}^2$. Allora (0,0) è per f un punto
- \diamondsuit stazionario ma non di estremo relativo
- ♠ Sia $f: \mathbb{R} \to \mathbb{R}$ data da $f(x) = \int_0^1 \exp(-6xy^2) \, dy$ e sia f(x) = a + bx + o(x) il suo sviluppo del primo ordine per $x \to 0$. Allora (a,b) vale
- \Diamond (1,-2)
- ♠ Sia $u: \mathbb{R} \to \mathbb{R}$ di classe C^2 tale che $u'(t) = t \arctan u(t) \ \forall t \in \mathbb{R}$ e u(0) = 1. Allora il punto t = 0 è per u un punto
- ♦ di minimo relativo
- \spadesuit La funzione $x \mapsto \exp(-x^2) \sin \exp(x^3)$, $x \in \mathbb{R}$, è
- ♦ limitata
- \spadesuit Sia $f:\mathbb{R}\to\mathbb{R}$. Perché f sia integrabile in [0,1] è sufficiente che f sia
- \Diamond uniformemente continua in (0,1)