Analisi Matematica 1

Prova scritta	Cognome e nome (stampatello chiaro)	C.L. (Mat/Fis)
15/09/14		

Una e una sola è la risposta esatta. Annerire la casella scelta così: \blacksquare Punti per ogni risposta: **Esatta** = 3, **Bianca** = 0, **Errata** = -1. Tempo a disposizione: 1 ora e 45 minuti.

- 1. Data la successione reale $\{a_n\}$, per k=1,2 si denoti con S_k la serie $\sum_{n=0}^{\infty} a_n^k$. Allora a S_1 converge se e solo se S_2 converge; b S_2 diverge se S_1 diverge; c S_1 e S_2 convergeno assolutamente se $a_n=o(1/n)$ per $n\to\infty$; d S_2 converge se S_1 converge assolutamente.
- **2.** L'integrale $\int_4^8 \frac{x}{x-2} dx$ vale **a** $4 + 2 \ln 3$; **b** $3 + \ln 2$; **c** $4 + \ln 2$; **d** $2 + \ln 3$.
- **3.** Per $x, y \in (0, +\infty)$ sia $f(x, y) = x^3 y$ e sia A l'insieme dei valori delle derivate direzionali di f in (1, 1/4). Allora sup A vale \boxed{a} 4/3; \boxed{b} 3/4; \boxed{c} 5/4; \boxed{d} 4/5.
- **4.** La funzione $f: \mathbb{R} \setminus \{0\} \to \mathbb{R}$ data da $f(x) = x^3|x| x^{-5}$ è a strettamente crescente; b continua ma non di classe C^1 ; c non differenziabile; d di classe C^1 e non monotona.
- **5.** Perché $f: \mathbb{R}^2 \to \mathbb{R}$ sia integrabile secondo Riemann rispetto alla misura ordinaria è a nec. che esista $n \in \mathbb{N}$ tale che $f(x) \leq (n^6 |x|^6)^+$ per ogni x; b suff. che f sia limitata; c nec. che f sia continua tranne al più in un insieme finito di punti; d suff. che f assuma solo un numero finito di valori.
- **6.** Siano $f: \mathbb{R} \to \mathbb{R}$ di classe C^1 e $u: \mathbb{R}^2 \to \mathbb{R}$ data da u(x,y) = f(3x+2y). Allora u verifica in \mathbb{R}^2 a $2D_xu+3D_yu=0$; b $3D_xu-2D_yu=0$; c $3D_xu+2D_yu=0$; d $2D_xu-3D_yu=0$.
- 7. Sia $A = \{ \text{Im } e^z : z \in \mathbb{C}, \text{ Re } z = \text{Im } z, \ 0 \le \text{Re } z \le \pi \}$. Allora $\max A$ vale a $e^{\pi/2}\sqrt{2}$; b $e^{3\pi/2}\sqrt{2}$; c $e^{3\pi/4}/\sqrt{2}$; d $e^{\pi/4}/\sqrt{2}$.
- **8.** Sia $u: \mathbb{R} \to \mathbb{R}$ tale che $u^2(x) = x^2 u(x) + 1 + x^2$ per ogni x. Se u è differenziabile e u(1) = 2, allora u'(1) vale a -2; b 3; c 2; d -3.
- **9.** Sia $G = F^{-1}$ ove $F : \mathbb{R} \to \mathbb{R}$ è la funzione biiettiva data da $F(x) = 3 + \int_{-x}^{x} \cosh(y^{2}) dy$. Allora G'(3) vale $\boxed{\mathbf{a}}$ 1/5; $\boxed{\mathbf{b}}$ 1/3; $\boxed{\mathbf{c}}$ 1/2; $\boxed{\mathbf{d}}$ 1.
- **10.** Il limite $\lim_{x\to 0} (3e^{-x} + 2e^{3x} 5)/(2\sin 3x)$ vale a 2; b 1/2; c 3; d -1/3.

spazio riservato alla commissione