Analisi Matematica 2

Prova scritta	Cognome e nome (stampatello chiaro)	C.L. (Mat/Fis)
13/09/11		

Una e una sola è la risposta esatta. Annerire la casella scelta così: \blacksquare L'esercizio contrassegnato con \bullet è diverso per i matematici e i fisici. Punti per ogni risposta: Esatta = 3, Bianca = 0, Errata = -1. Tempo a disposizione: 1 ora e 45 minuti.

- 1. Per $\alpha > 0$ sia $f_{\alpha} : \mathbb{R}^{3} \to \mathbb{R}$ data da $f_{\alpha}(x) = |x|e^{-\alpha|x|}$. Allora a per almeno un α , f_{α} ha massimo e non ha minimo; per ogni α , f_{α} ha massimo e il punto di massimo non è unico; c per ogni α , f_{α} ha minimo e non ha massimo; d per almeno un α , f_{α} ha massimo e il punto di massimo è unico.
- **2.** Sia $f: \mathbb{R} \to \mathbb{R}$ lipschitziana di classe C^1 e sia $F: \mathbb{R} \to \mathbb{R}$ data da $F(x) = \int_0^1 f(xy) \, dy$. Allora F è a convessa; uniformemente continua; c monotona; d limitata.
- **3.** Sia $g: \mathbb{R} \to \mathbb{R}$ convessa di classe C^2 e sia $G: \mathbb{R} \to \mathbb{R}$ data da $G(x) = g(x^2)$. Allora G è a convessa se g è non negativa; convessa se g è non decrescente; c strettamente convessa se g è strettamente convessa; d monotona se g è monotona.
- 4. Fisici: Sia $f : \mathbb{R} \to \mathbb{R}$ data da $f(x) = x^2 \exp(-x^3)$. Allora $f^{(92)}(0)$ vale [a] 62!/20!; [b] 62!/30!; [d] 92!/20!.
 - **5.** Sia $v: [0, +\infty) \to \mathbb{R}$ la soluzione globale del problema di Cauchy v'(t) = 2tv(t) per $t \ge 0$ e $v(0) = e^{-1}$. Allora v(2) vale $\boxed{\mathbf{a}} \ e^2$; $\boxed{\mathbf{b}} \ e^{3/2}$; $\boxed{\mathbf{c}} \ e^3$; $\boxed{\mathbf{d}} \ e^{2/3}$.
 - **6.** Sia Γ il grafico di $\ln|_{[1,3]}$. Allora l'integrale $\int_{\Gamma} 2e^{2y}(x^2+1)^{-1/2} ds(x,y)$ vale \blacksquare 8; b 3; c 2; d 5.
- 7. Fisici: Sia $B = \{(x, y, z) \in \mathbb{R}^3 : y \ge 0, x^2 + y^2 \ge 1, 0 \le z \le 4 x^2 y^2 \}$. Allora il volume di B vale $\boxed{\blacksquare} 9\pi/4$; $\boxed{b} 5\pi/3$; $\boxed{c} 7\pi/5$; $\boxed{d} 4\pi/9$.
 - 8. Sia C la circonferenza $x^2+y^2=1$ e sia $f:C\to\mathbb{R}$ data da $f(x,y)=x+y^2$. Allora a f non ha massimo; b f non ha minimo; f ha massimo e max $f\neq 1$; d f ha massimo e minimo e max f=1.
 - **9.** La formula $x^3 (\ln(1+x^3) 3\ln x) = 1 + \alpha x^{-3} + o(x^{-3})$ per $x \to +\infty$ è vera se α vale a 1/2; c 2; d -2.
- 10. Sia u la soluzione massimale del problema di Cauchy in avanti $u'(t) = u^2(t) \sin u(t)$ e $u(0) = -3\pi/2$. Allora a u non è globale; u è globale e crescente; c u è globale e decrescente; d u è globale e periodica.

spazio riservato alla commissione