Analisi B

Appello del giorno	Cognome e nome (stampatello chiaro)	C.L. (M/F)
12/02/07		

Una e una sola è la risposta esatta. Annerire la casella scelta così: ■ Nell'esercizio • i matematici/fisici ignorino la parte **SoloF** [...] /**SoloM** [...] del testo. Punti per ogni risposta: Esatta = 3, Bianca = 0, Errata = -1. Tempo a disposizione: 1 ora e 45 minuti.

- 1. Considerata la funzione $f: x \mapsto x^3 \sin x^2$, $x \in \mathbb{R}$, si ha che a 0 è un punto di minimo locale per f; $b \mid 0$ è un punto di massimo locale per f; \blacksquare esiste un intorno di 0 in cui f cresce; $|\mathbf{d}| = 0$ non è un punto stazionario per f.
- **2.** Siano $A \subseteq \mathbb{R}$ e $f: A \to \mathbb{R}$ tali che $\pm 1 \in A$ e $\pm f(\pm 1) > 0$. Allora perché esista $x \in A$ tale che f(x) = 0 è sufficiente che a = [-1, 1]; b = f sia continua; A sia una semiretta e f sia C^1 ; d A = (-2, 2) e f sia monotona.
- **3.** Perché $f: \mathbb{R} \to \mathbb{R}$ sia non decrescente è \blacksquare necessario che esista $x \mapsto \int_0^x f(y) \, dy$ e sia b necessario che f sia C^1 con $f'(x) \ge 0 \ \forall x$; c necessario che f sia convessa; d sufficiente che, per ogni $x \neq 0$, f sia differenziabile in x con f'(x) > 0.
- **4.** Sia $u:[0,+\infty)\to\mathbb{R}$ tale che $u''(t)+u(t)=-3\cos 2t \ \forall t \ e \ u(0)=u'(0)=1$. Allora $u(\pi/2)$ vale $\begin{bmatrix} a \\ -1 \end{bmatrix}$, $\begin{bmatrix} b \\ 3 \end{bmatrix}$, $\begin{bmatrix} c \\ 1 \end{bmatrix}$, $\begin{bmatrix} \bullet \\ \bullet \end{bmatrix}$ 0.
- **5.** Sia $f: \mathbb{R} \to \overline{\mathbb{R}}$ di classe C^{∞} e, per ogni $n \in \mathbb{N}$, sia P_n il suo polinomio di Taylor di centro 0 e ordine n. Allora a $\lim_{n\to\infty} P_n(x) = f(x)$ se |x| è abbastanza piccolo; $\boxed{\mathbf{b}} \quad f(x) = P_n(x) + o(x^{n+1}) \text{ per } x \to 0 \quad \forall n ; \quad \boxed{\mathbf{c}} \quad |P_n(x)| \le |f(x)| \quad \forall x \quad \forall n ;$ una successione reale $\{M_n\}$ tale che $|f(x) - P_n(x)| \le M_n x^{n+1} \quad \forall n \quad \forall x \in (0,1)$.
- **6.** Sia $f: \mathbb{R} \to \mathbb{R}$ definita da $f(x) = \sqrt{|\sin x|}/(x^2 + 1)$. Allora a f è lipschitziana; b f è concava; c $f(x) = o(x^{-2})$ per $x \to +\infty$; f è uniformemente continua.
- 7. Sia SoloM [$u(x) = \sum_{n=1}^{\infty} 2^{-n} \cos n^2 x$ per $x \in \mathbb{R}$] SoloF [$u: \mathbb{R} \to \mathbb{R}$ la soluzione del problema di Cauchy $u'(t) = -2t(1-2t^4+2u(t))$, u(0)=0]. Allora a u non è di classe C^{∞} ; $| \mathbf{b} | 0$ è un punto di massimo locale per u; $| \mathbf{c} | 0$ è un punto di minimo locale per u; $|\mathbf{d}|$ 0 non è un punto di estremo locale per u.
 - **8.** Siano $C = \{(x, y, z) \in \mathbb{R}^3 : 0 \le x \le 1, \sqrt{y^2 + z^2} \le x \}$ e $I = \int_C \frac{y^2}{y^2 + z^2} e^{\sqrt{y^2 + z^2}} dx dy dz$. Allora I vale [a] $\pi(e-2)$; [b] (e-2)/2; [m] $\pi(3-e)$; [d] (3-e)/2. **9.** Per $n=1,2,\ldots$ sia $f_n:\mathbb{R}\to\mathbb{R}$ data da $f_n(x)=x^2$ se $x\leq 0$ e $f_n(x)=x^n$ se x>0.
- **10.** Sia $f(x,y,z) = x^2 (y+z)^4$, $(x,y,z) \in \mathbb{R}^3$. Allora (0,0,0) è per f un punto a non stazionario; | b | di minimo locale; | non di estremo locale; d di massimo locale.

spazio riservato alla commissione