Analisi A

Appello del giorno	Cognome e nome (stampatello chiaro)	C.L. (M/F)
12/02/07		

Una e una sola è la risposta esatta. Annerire la casella scelta così: \blacksquare Punti per ogni risposta: **Esatta** = 3, **Bianca** = 0, **Errata** = -1. Tempo a disposizione: 1 ora e 45 minuti.

- **1.** Il limite $\lim_{(x,y)\to(0,0)} \tanh(x^2+y^2)/(x^4+y^4)$ vale $+\infty$; b vale 1; c non esiste; d vale 0.
- **2.** Se $E \subseteq \mathbb{R}$ è un intervallo, si ponga $m(E) = \operatorname{lungh}(E \cap (-3,1)) + \int_{E \cap (0,2)} x \, dx$ e si consideri lo spazio elementare di misura $(\mathbb{R}, \mathcal{E}, m)$, ove \mathcal{E} è il semianello degli intervalli. Sia $f: \mathbb{R} \to \mathbb{R}$ data da f(x) = 8 se $x \in (0,1)$, f(x) = -2 se $x \in (1,4)$ e f(x) = 0 altrimenti. Allora l'integrale $\int_{\mathbb{R}} f(x) \, dm$ vale a 5; b 6; c 8; d 9.
- **3.** Posto $a_n = (2e)^n/n!$ per n > 0 intero, il limite $\lim_{n \to \infty} (1 + a_n)^n (1 + \cosh 2^{-n})^2$ vale \boxed{a} 5; \boxed{b} 2; $\boxed{\bullet}$ 4; \boxed{d} $+\infty$.
- **4.** Sia $f: \mathbb{R} \to \mathbb{R}$ data da $f(x) = \sin x^3 / \sinh x$ se x > 0 e f(x) = 0 se $x \le 0$. Allora f è: a continua ma non differenziabile; b non limitata; c discontinua; differenziabile.
- **6.** Per $\alpha > 0$ si ponga $I(\alpha) = \int_{\alpha}^{1/3} v^{-1/2} \arctan v^{1/2} \, dv$. Allora $\lim_{\alpha \to 0} I(\alpha)$ vale a $2\pi/\sqrt{3} \ln(4/3)$; b $\pi\sqrt{3}/9 \ln 4$; c $2\pi/\sqrt{3} \ln 4$; $\pi\sqrt{3}/9 \ln(4/3)$.
- 7. Sia S la serie $\sum_{n=1}^{\infty} a_n/b_n$ ove $a_n = (1+n^{-1})^{n+2}$ e $b_n = 1+(-1)^n n^{-3}$. Allora S a converge assolutamente; diverge; c converge semplicemente; d oscilla.
- **8.** Sia $u: \mathbb{R} \to \mathbb{R}$ di classe C^1 tale che $u(x) + u^5(x) = x^4 + 1$ per ogni x e u(1) = 1. Allora u'(1) vale a 3/2; b 0; \blacksquare 2/3; d 1.
- **9.** Sia $h: \mathbb{R}^2 \to \mathbb{R}$ di classe C^1 tale che h(x) < 0 se |x| < 5, h(x) > 0 se |x| > 5 e $\nabla h(-3,4) = (a,b) \neq (0,0)$. Allora a b < 0; a a < 0; c ab > 0; d ab = 0.
- **10.** Se $z = e^{i\pi/2} + 2e^{i\pi}$, allora $10 \operatorname{Im}(1/z)$ vale [a] -4; [b] 2; [c] 4; [d] -2.