Analisi B

Appello del giorno	Cognome e nome (stampatello chiaro)	C.L. (M/F)
11/02/09		

Una e una sola è la risposta esatta. Annerire la casella scelta così: \blacksquare L'esercizio contrassegnato con \bullet è diverso per i matematici e i fisici. Punti per ogni risposta: Esatta = 3, Bianca = 0, Errata = -1. Tempo a disposizione: 1 ora e 45 minuti.

- **1.** Si ponga $u(x) = \sinh x^2$ per $x \in \mathbb{R}$. Allora $u^{(18)}(0)$ vale a 18!; b 37!; 18!/9!; d 18!/37!.
- 2. Fisici: Posto $f(x) = \int_0^{2x} \arctan e^{xy} dy$ per $x \in \mathbb{R}$, f'(0) vale [a] π ; [b] 0; [a] $\pi/2$; [d] $\pi/4$.
- 3. Fisici: Perché una funzione $f: \mathbb{R} \setminus \{0\} \to \mathbb{R}$ di classe C^2 sia lipschitziana è a nec. che f'' sia limitata; b suff. che f'' sia limitata; suff. che f' sia limitata e che $f(0^-) = f(0^+)$; d suff. che f' sia limitata e che $f'(0^-) = f'(0^+)$.
 - **4.** Siano $B = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}$ e $f : B \to \mathbb{R}$ data da $f(x,y) = 1 + x^2 + y^2$. Allora il numero dei punti di estremo relativo per f è a 1; b 2; c 0; ∞ .
 - **5.** Sia $f: \mathbb{R}^n \to \mathbb{R}$ di classe C^2 e si ponga $a_{ij} = D_i D_j f(0)$ per i, j = 1, ..., n. Allora, perché f abbia minimo locale in 0, è a nec. che $a_{ij} \geq 0 \ \forall i, j$; b suff. che $a_{ij} > 0$ $\forall i, j$; nec. che $a_{ii} \geq 0$ per ogni i; d suff. che $a_{ii} > 0$ per ogni i.
 - **6.** Se $u: \mathbb{R} \to \mathbb{R}$ è C^{∞} e tale che u'' + 2u' + 2u = 0, allora u è a non convessa; b non monotona; c infinitesima a $-\infty$; monotona se e solo se u(0) = u'(0) = 0.
 - 7. Sia $f: \mathbb{R} \to \mathbb{R}$ di classe C^{∞} in $\mathbb{R} \setminus \{0\}$. Perché f sia di classe C^{1} in \mathbb{R} è a suff. che i limiti unilateri $f'(0^{\pm})$ esistano finiti e uguali; b suff. che f sia differenziabile in 0; c nec. che f' sia limitata; suff. che f sia continua in 0 e che il limite $\lim_{x\to 0} f^{(n)}(x)$ esista finito per ogni n>0.
 - 8. La soluzione massimale del problema di Cauchy <u>in avanti</u> $u'(t) = t^{1/2} \tanh u(t)$, u(0) = 1, è a globale e limitata; b non globale ma limitata; e globale ma non limitata; d non globale e non limitata.
 - **9.** Sia $B = \{(x,y) \in (0,+\infty)^2 : |(x,y)| \le 2\}$. Allora $\int_B x^2 \, dx \, dy$ vale π ; b $\pi/3$; c $2\pi/3$; d $\pi/2$.
- **10.** Sia $h : \mathbb{R} \setminus \{0\} \to \mathbb{R}$ con h(x) definito di volta in volta. Quella non uniformemente continua è a $\tanh x \sin(1/x)$; b $|x|^{1/3}$; c $(\sin x^2)/(1+x^2)$; c $\cos x \sin x$.

spazio riservato alla commissione