Analisi B

Prova scritta	Cognome e nome (stampatello chiaro)	C.L. (Mat/Fis)
08/02/10		

Una e una sola è la risposta esatta. Annerire la casella scelta così: \blacksquare L'esercizio contrassegnato con \bullet è diverso per i matematici e i fisici. Punti per ogni risposta: Esatta = 3, Bianca = 0, Errata = -1. Tempo a disposizione: 1 ora e 45 minuti.

- **1.** Si ponga $u(x) = x^3 \sinh x^4$ per $x \in \mathbb{R}$. Allora $u^{(39)}(0)$ vale a 9!; b 39!; c 39!/9!; d 9!/39!.
- 2. Fisici: Posto $f(x) = \int_{-1}^{3x} 2 \sin e^{xy} dy$ per $x \in \mathbb{R}$, il rapporto $(f'(0) + \cos 1)/\sin 1$ vale [a] 2; [b] 3; [c] 6; [d] 4.
- 3. Fisici: Per r > 0 si ponga $D_r = \{x \in \mathbb{R}^3 : |x| \le r^2, x_1 = x_2\}$. Se vale l'uguaglianza $\int_{D_2} f(x) dS = \lambda \int_{D_3} f(2x/3) dS$ per ogni $f : \mathbb{R}^3 \to \mathbb{R}$ continua, allora λ vale a 27/8; b 8/27; c 4/9; d 9/4.
 - **4.** Siano $B = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}$ e $f : B \to \mathbb{R}$ data da $f(x,y) = x^2 y^2$. Allora il numero dei punti di estremo relativo per f è a 1; b 2; c 5; d 4.
 - **5.** Sia $u: \mathbb{R} \to \mathbb{R}$ di classe C^{∞} avente in 0 un punto di minimo relativo. Allora a $u^{(n)}(0) \geq 0 \ \forall n$ pari; b u''(0) > 0; c per ogni n l'equazione $u'(x)u^{(n)}(x) = 0$ ha soluzioni; d $u^{(n)}(0) = 0 \ \forall n$ dispari.
 - **6.** Se $u: [0, +\infty) \to \mathbb{R}$ di classe C^1 tale che u'(t) = u(t)/(t+5) per ogni $t \ge 0$ e u(0) = 6. Allora u(15) vale \boxed{a} 120; \boxed{b} 80; \boxed{c} 20; \boxed{d} 24.
 - 7. Sia $f: \mathbb{R} \to \mathbb{R}$ di classe C^{∞} . Allora a $\sum_{n=0}^{\infty} \{f^{(n)}(0)/n!\} x^n = f(x)$ per ogni x; b esiste $\delta > 0$ tale che $\sum_{n=0}^{\infty} \{f^{(n)}(0)/n!\} x^n = f(x)$ per $|x| < \delta$; c esistono $\delta, M > 0$ tali che $|f^{(n)}(x)| \leq M$ per $|x| < \delta$ e per ogni n; d esiste una successione reale $\{M_n\}$ tale che $|f^{(n)}(x)| \leq M_n$ per $|x| \leq n$ e per ogni n.
 - 8. La soluzione massimale del problema di Cauchy in avanti $u'(t) = 4u(t) u^2(t)$, u(0) = 2, è a globale e non limitata; b non globale ma limitata; c globale e limitata; d non globale e non limitata.
 - **9.** Sia $S = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 \le 1, \ z = y\}$. Allora l'area di S vale a $\pi\sqrt{2}$; b $\pi\sqrt{3}$; c π ; d $\pi\sqrt{6}$.
 - **10.** Sia $k:(0,1)\to\mathbb{R}$ data da $k(x)=x^{-\alpha}\sin x^2$ ove $\alpha\in\mathbb{R}$. Allora k è lipschitziana a se e solo se $\alpha>0$; b se $\alpha=3$; c se e solo se $\alpha=1$; d se $\alpha<1$.

spazio riservato alla commissione