Analisi Matematica 1

Prova scritta	Cognome e nome (stampatello chiaro)	C.L. (Mat/Fis)
08/02/10		

Una e una sola è la risposta esatta. Annerire la casella scelta così: \blacksquare Punti per ogni risposta: **Esatta** = 3, **Bianca** = 0, **Errata** = -1. Tempo a disposizione: 1 ora e 45 minuti.

- **1.** Siano $f, F : \mathbb{R} \to \mathbb{R}$ date da $f(x) = 3\cosh(2x)$ se $x \neq 3$ e f(3) = -2 e $F(x) = \int_1^x f(y) \, dy$ per $x \in \mathbb{R}$. Allora il quadrato F^2 di F è a differenziabile e monotona; b differenziabile e non monotona; c discontinua in 3; d non differenziabile in 3.
- **2.** La funzione di classe C^1 $\varphi: \mathbb{R} \to [0, +\infty)$ verifica $\varphi(t) + e^{t-5}\sqrt{\varphi(t)} = 2e^{10-2t}\varphi^2(t)$ per ogni $t \in \mathbb{R}$ e $\varphi(5) = 1$. Allora $\varphi'(5)$ vale [a] 2; [b] 5; [c] 10; [d] 1/5.
- 3. Sia $f: \mathbb{R}^3 \to \mathbb{R}^2$ tale che $\lim_{x \to (0,0,0)} f(x) = (1,2)$. Allora, dette f_1 e f_2 le componenti di f e posto $B_r = B_r(0,0,0)$ per r > 0, esiste $\delta > 0$ tale che a $|f(x)| \le 3$ per ogni $x \in B_\delta$; b $|f(x)| \ge 2$ per ogni $x \in B_\delta$; c $f_1(x) > 0$ per ogni $x \in B_{2\delta} \setminus B_\delta$; d $f_1(x)f_2(x) > 0$ per ogni $x \in B_{2\delta}$.
- **4.** Il limite $\lim_{n\to\infty} a_n/b_n$, ove $a_n = 3n^{1.2} 2 + 8n^2$ e $b_n = 5n^2 \tanh n^4 \cos n^3$, vale a 5/8; b 3/5; c 8/3; d 8/5.
- **5.** Sia $f: (0, +\infty) \times \mathbb{R} \to \mathbb{R}^3$ data da $f(x, y) = (e^y \sin 2x, y^2, x^3)$ se $y \ge 0$ e $f(x, y) = (ye^x, y^2, x^3)$ se y < 0. Allora il punto $(x_0, 0)$ è una discontinuità di f se x_0 vale a 12; b 2π ; c 0; d 22π .
- **6.** Siano D il disco ottenuto intersecando la palla $\{x \in \mathbb{R}^3 : |x| \leq 3\}$ con il piano $x_1 = x_2$ e $f: D \to \mathbb{R}$ data da f(x) = 3 se $x_3 \geq 0$ e f(x) = 9 se $x_3 < 0$. Allora la media $f_D f(x) dS$ vale a 3; b 9; c 4; d 6.
- 7. Per ogni intervallo limitato $I \subset \mathbb{R}$ si ponga $m(I) = 6 \operatorname{lungh}(I \cap (3,5)) + 10 \# (I \cap \{3,4,5\})$ ove # significa "numero dei punti di". Allora $\int_{[1,4)} (x/(x^2+1)) \, dm$ vale $\boxed{\mathbf{a}}$ $12+2\ln 2$; $\boxed{\mathbf{b}}$ $8+9\ln 2$; $\boxed{\mathbf{c}}$ $3+3\ln 1.7$; $\boxed{\mathbf{d}}$ $12+5\ln 1.7$.
- **8.** Il numero delle soluzioni complesse z dell'equazione $(iz)^3(z^4+1)(z^6-1)=0$ che verificano ${\rm Im}\,z<-1/3$ è a 0; b 10; c 4; d 3.
- 9. Sia $\gamma \in (0, +\infty)$. Allora la serie $\sum_{n=1}^{\infty} (-1)^n n^{-(\gamma 3 \tanh n)}$ a converge semplicemente se $\gamma = 5$; b converge assolutamente se e solo se $\gamma \geq 5$; c converge assolutamente se $\gamma = 5$; d converge assolutamente se e solo se $\gamma > 3$.
- **10.** Sia $\varphi : \mathbb{R}^2 \to \mathbb{R}$ di classe C^1 tale che $\varphi(x) = 0$ se |x| = 1 oppure $x_1 = 0$ e $\varphi(x) \neq 0$ altrimenti. Allora quale delle affermazioni seguenti è incompatibile con le ipotesi?

 - $|d| \nabla \varphi(-1,0) = (0,0).$

spazio riservato alla commissione