Analisi Matematica 1

Prova scritta	Cognome e nome (stampatello chiaro)	C.L. (Mat/Fis)
07/09/12		

Una e una sola è la risposta esatta. Annerire la casella scelta così: \blacksquare Punti per ogni risposta: **Esatta** = 3, **Bianca** = 0, **Errata** = -1. Tempo a disposizione: 1 ora e 45 minuti.

- **1.** Sia $\alpha > 0$. Allora la serie $\sum_{n=1}^{\infty} (1+n^{-3})^{\alpha} (1+n^2)^{-\alpha} (\sin n^{-4})^{\alpha}$ converge se e solo se $\alpha > 1/2$; $\beta = \alpha > 1/2$.
- **2.** Siano $\lambda, \mu: (0, +\infty) \to \mathbb{R}$ date da $\lambda(x) = \sqrt[4]{1+3x} 1$ e $\mu(x) = \sin^2(\sqrt{3x})$. Allora il limite $\lim_{x\to 0^+} \lambda(x)/\mu(x)$ vale a 1/4; b 2/3; c 4/3; d 3/4.
- 3. Sia $f:[0,1] \to \mathbb{R}$ non negativa. Perché f sia integrabile e $\int_0^1 f(x) \, dx = 0$ è a nec. che $\forall n$ esista $s:[0,1] \to \mathbb{R}$ a scala tale che $s \ge f$ e $\int_0^1 s(x) \, dx < 1/n$; b suff. che $\forall n$ esista $s:[0,1] \to \mathbb{R}$ a scala tale che $s \le f$ e $s(x) \ge f(x) (1/n) \ \forall x$; c nec. che $\forall n$ esista $s:[0,1] \to \mathbb{R}$ a scala tale che $s \ge f$ e $s(x) \le 1/n \ \forall x$; d nec. e suff. che $\forall n$ esista $s:[0,1] \to \mathbb{R}$ a scala tale che $s \ge f$ e $s(x) \le 1/n \ \forall x$.
- **4.** Siano $f: \mathbb{R}^3 \to \mathbb{R}$ differenziabile tale che $\nabla f(4,1,6) = (1/4,7,-1/6)$ e $\varphi: \mathbb{R}^2 \to \mathbb{R}$ data da $\varphi(x,y) = f(4xy^4,x,6x^6y^4)$. Allora $(\partial \varphi/\partial y)(1,1)$ vale a -4; b 7; c 0; d (1/4) (1/6).
- **5.** Siano $\varphi : \mathbb{R} \to \mathbb{R}$ e $\{x_n\}$ reale convergente a 2. Allora $\lim_{n \to \infty} \varphi(x_n) = 3$ a se φ è continua in 2 e $\varphi(2) = 3$; b se φ è continua in 3 e $\varphi(3) = 2$; c se $\varphi(x) = 3$ $\forall x \neq 2$; d se $\lim_{x \to 2} \varphi(x) = 3$.
- **6.** Siano $x \in \mathbb{R}$ e $f : \mathbb{R} \to \mathbb{R}$ continua tali che f(x) = 0. Allora perché f^7 sia differenziabile in x è a nec. che f sia differenziabile in x; b nec. che f'(x) esista finita; c suff. che $f(x+h) = o(|h|^{1/3})$ per $h \to 0$; d nec. che f(x+h) = o(|h|) per $h \to 0$.
- 7. Sia $F: \mathbb{R} \to \mathbb{R}$ tale che F(7) = 4. Perché il punto 7 sia di massimo assoluto per F è a suff. che F cresca in $(-\infty, 7)$ e decresca in $(7, +\infty)$; b nec. che F'(7) = 0; c nec. che F sia limitata superiormente; d nec. che F sia continua in 7.
- 8. Per ogni rettangolo E di \mathbb{R}^2 si ponga m(E)=0 se area E=0 e $m(E)=\mathrm{lungh}\,S$ se $E=I\times J$ non è degenere, ove S è uno degli insiemi elencati. Indicare la scelta di S che rende m misura additiva a S=I; b $S=J\cap(0,1)$; c $S=\{x\in E: 2x_1+x_2=0\}$; d $S=\mathrm{diagonale}\,\mathrm{di}\,E$.
- **9.** L'integrale $\int_0^1 x \cosh x \, dx$ vale $\boxed{\mathbf{a}}$ e; $\boxed{\mathbf{b}}$ e-1; $\boxed{\mathbf{c}}$ $1-e^{-1}$; $\boxed{\mathbf{d}}$ e^{-1} .
- **10.** Si ha $\forall z \in \mathbb{C}$ a $|e^z| = e^{|z|}$; b $|\cos^2 z| \le 1$; c $\cos z = i \cosh(iz)$; d $\overline{e^z} = e^{\overline{z}}$.

spazio riservato alla commissione