Analisi Matematica 1 - 26/06/23 - Tempo a disposizione: 2h e 30 minuti
Matricola Cognome Nome
Ing. Elettronica e Informatica \square Bioingegneria \square Ing. Industriale \square
A1. Trovare la soluzione del problema di Cauchy: $\begin{cases} u''(t)-4u(t)=t,\\ u(0)=0,\ u'(0)=1. \end{cases}$
A2 * Data la funzione $f: [0, 2\pi] \to \mathbb{R}$ definita da $f(x) = 6\sin(x)e^x$, individuare tutti i suoi punti di
massimo e di minimo relativi (locali):
Calcolare massimo e minimo assoluti (globali) di f :
A3. Calcolare il valore dei seguenti limiti: $\lim_{n \to +\infty} \left(1 + \frac{6}{e^n}\right)^{-e^n}$ $\lim_{x \to 6} \tan(x+6) \left(\frac{\cos(x-6) - 1 + [\ln(x-5)]^2}{\ln(x^2 - 12x + 37)}\right)$ A4. Calcolare $I = 3 \int_0^{\pi/6} \frac{\sin x}{\cos^2 x + 3\cos x} dx$, usando un opportuno cambio di variabile. A5. Dire per quali $\alpha \in \mathbb{R}$ converge la serie $\sum_{n=1}^{+\infty} \left(\sqrt[9]{n^9 + 2n} - n\right)^{\alpha} e^{\frac{1}{n^2}}$
A6. Sia $f:[0,+\infty)\to\mathbb{R}$, definita da $f(x)=\frac{e^{x-3}}{\sqrt{x+3}}$. Scrivere l'equazione della retta tangente al
grafico di f nel punto $(3, f(3))$.
A7. Si consideri $f:[0,+\infty)\to\mathbb{R}$ definita da $f(x)=\sqrt{x}e^{-(x-2)}$. Scrivere il polinomio di Taylor/Mc-Laurin di ordine 2 della f centrato in $x_o=2$.
A8 * Calcolare il modulo del numero complesso $\frac{(2-2i)^{14}}{(1+i)^{12}}$ Risolvere in $\mathbb C$ l'equazione $z z ^2-i\bar z=0$ e scrivere le soluzioni in forma algebrica.

- **B1.** Sia $f : \mathbb{R} \to \mathbb{R}$ una funzione continua tale che f(0) = 2. Posto $F(x) = \int_0^x f(t) dt$, risulta che il $\lim_{x \to 0} \frac{F(x)}{x}$ è pari a: A 1. B 1/2. C 0. D 2.
- **B2.** Sia (a_n) una successione a valori reali tale che la serie $\sum_{n=8}^{+\infty} a_n$ è convergente. Allora,

$$\boxed{\mathbf{A}} \lim_{n \to +\infty} \ln \left(1 + \frac{1}{a_n} \right) = 0. \quad \boxed{\mathbf{B}} \lim_{n \to +\infty} e^{1/a_n} = 0. \quad \boxed{\mathbf{C}} \lim_{n \to +\infty} e^{a_n} = 1. \quad \boxed{\mathbf{D}} \lim_{n \to +\infty} \ln \left(1 + \frac{1}{a_n} \right) = +\infty.$$

- **B3*** Sia $f: \mathbb{R} \to \mathbb{R}$ una funzione di classe $C^5(\mathbb{R})$ e sia $P_4(x,1) = 1 + x^2 + x^3 + x^4$ il suo polinomio di Taylor di grado 4 centrato in $x_0 = 1$. Allora: $\boxed{\mathbf{A}} f$ è decrescente in un intorno di $x_0 = 1$. $\boxed{\mathbf{B}} f$ è crescente in un intorno di $x_0 = 1$. $\boxed{\mathbf{C}} f$ è un polinomio. $\boxed{\mathbf{D}} f(0) = 1$
- **B4.** Sia $f \colon [8,12] \to \mathbb{R}$ una funzione di classe C^2 in [8,12]. Allora:
- $\boxed{\mathbf{A}} \quad \exists \xi \in (8,12) \text{ tale che } f'(\xi) = 0. \quad \boxed{\mathbf{B}} \quad \exists \xi \in (8,12) \text{ tale che } f''(\xi) = 0. \quad \boxed{\mathbf{C}} \quad f \text{ non può essere monotona.} \quad \boxed{\mathbf{D}} \quad f' \text{ ha massimo e minimo in } [8,12].$
- **B5.** Si consideri la funzione $f(x) = 1 e^{x^2}$. Allora \boxed{A} $f(x) = o(x^4)$ per $x \to 0$. \boxed{B} f(x) = o(x) per $x \to 0$. \boxed{C} $xf(x) = o(x^4)$ per $x \to 0$. \boxed{D} $f(x) = o(x^2)$ per $x \to 0$.
- **B6.** Siano $f,g:\mathbb{R}\to\mathbb{R}$ due funzioni crescenti e tali che g(0)=1 e f(x)>g(x) per x abbastanza grande. Allora A $\lim_{x\to+\infty}\frac{f(x)}{g(x)}=+\infty$. A $\lim_{x\to+\infty}\frac{f(x)}{g(x)}=+\infty$. $\lim_{x\to+\infty}f(x)>\lim_{x\to+\infty}g(x)$. $\lim_{x\to+\infty}\frac{f(x)}{g(x)}>1$. $\lim_{x\to+\infty}\frac{f(x)}{g(x)}>1$.
- **B7**. Sia data la successione $\{a_n\}$ con $n \ge 1$ definita da $a_{n+1} = e^{a_n} 1$, $a_1 = 1$. Allora $\boxed{\mathbf{A}} \lim_{n \to \infty} a_n = -4$. $\boxed{\mathbf{B}}$ La successione è monotona decrescente. $\boxed{\mathbf{C}}$ La successione è monotona crescente. $\boxed{\mathbf{D}}$ La successione è indeterminata.
- **B8.** Si considerino $f: \mathbb{R} \to \mathbb{R}$ tale che $\forall x \in \mathbb{R}$ risulti $|f(x)| \leq 4$ e $g: \mathbb{R} \to \mathbb{R}$, continua in tutto \mathbb{R} . Allora A f g è continua in tutto R. B f g è continua in f g è continua in f g e continua in f f e continua in f e