Analisi Matematica I - 26/01/23 - Tempo a disposizione: 2h e 30 minuti					
Matricola	Cogno	me		Nome	
A1* Data la	funzione $f : \mathbb{R} \to \mathbb{R}$	definita com	e: $f(x) = \frac{(x-6)+1}{(x-6)^2+3}$,	determina	arne gli zeri:
e i punti di 1	massimo e minimo,	stabilendo se	e sono locali o globa	ali:	
A2. Sia <i>f</i> :	$\mathbb{R}\backslash\left\{3+\frac{2k+1}{2}\pi\right\}$	$\to \mathbb{R} \text{ con } k \in$	$\in \mathbb{Z}$, definita da $f(x)$	$x) = \frac{\sin(\theta)}{\cos(\theta)}$	(3+x)/(3-x). Scrivere l'equazione
della retta ta	angente al grafico di	f in x = 0			
	sideri $f: \left[-\frac{3}{2}, +c\right]$			$n\left(\frac{\pi}{x+3}\right)$). Scrivere il polinomio di
		Jan			
	re il valore dei segu $\frac{1) - 6\sinh(x-1)}{(x-1) + \sin^2(x-1)}$		$\lim_{n \to +\infty} \left(1 + \frac{6}{\ln(n)} \right)^{\ln n}$	$\operatorname{m}(n)$	
A5. Sia $w =$	= 6 + 2i. Calcolare	$A = \frac{1}{2} \Big(\text{Re}(i$	$w) + \operatorname{Im}(\bar{w})$ seguente equazione	$ z ^2 - \bar{z} =$	$= -2A + \frac{A}{2}i$
A6* Dire pe	er quali $\alpha \in \mathbb{R}$ conv	erge la serie	$\sum_{n=7}^{+\infty} \frac{\arctan(2+1)}{n^{2\alpha}(\sqrt{n+6}-\sqrt{n+6})}$	$\frac{n^{\alpha})}{\sqrt{n-6}}$	
A7. Trovare	e la soluzione del pr	oblema di C	auchy in $[1, +\infty)$		
$\begin{cases} u'(t) \\ u(1) \end{cases}$	$+2\frac{u(t)}{t} = \frac{3}{t^2},$ = 1.				
A8. Trovare	e una primitiva di <i>f</i>	$f(x) = x \sinh x$	$(6x^2) + x\sin(3x)$		
Calcolare \int_0	$\int_{0}^{\pi} f(x) dx$				

B1. Sia $f: [-1,1] \to \mathbb{R}$ una funzione dispari, continua in [-1,1] e derivabile in (-1,1). Allora:

 $A \exists \xi \in (-1,1) \text{ tale che } f'(\xi) = 0.$ $B \exists \xi \in (-1,1) \text{ tale che } f'(\xi) = f(1) - f(-1).$ $C \exists \xi \in (-1,1) \text{ tale che } f'(\xi) = \frac{f(1)}{2}.$ $D \exists \xi \in (-1,1) \text{ tale che } f'(\xi) = f(1).$

B2. Sia $f:[0,1]\to\mathbb{R}$ una funzione continua in (0,1]. f risulta integrabile in [0,1] SE:

 $\boxed{\mathbf{A}}$ f(0) = 0. $\boxed{\mathbf{B}}$ esiste $\lim_{x \to 0^+} f(x)$. $\boxed{\mathbf{C}}$ $f(x) \sim \frac{1}{x}$, per $x \to 0^+$. $\boxed{\mathbf{D}}$ esiste finito $\lim_{x \to 0^+} f(x)$.

B3.* Sia $f: \mathbb{R} \to \mathbb{R}$ una funzione di classe C^2 e sia $P_2(x,1) = x + x^2$ il suo polinomio di Taylor di grado 2 centrato in $x_0 = 1$. Allora: A f''(1) = 1. B f'(1) = 3. C f(1) = 3. D f'(1) = 1.

B4. Sia (a_n) una successione a valori reali tale che $\sum_{n=7}^{+\infty} \arctan(a_n)$ converge. Allora,

 $\boxed{\mathbf{A}} \sum_{n=9}^{+\infty} \cos(a_n)$ è convergente. $\boxed{\mathbf{B}}(a_n)$ è infinitesima. $\boxed{\mathbf{C}} \sum_{n=8}^{+\infty} |\arctan(a_n)| < +\infty$. $\boxed{\mathbf{D}}$ Non esiste $\lim_{n \to +\infty} a_n$.

B5. Siano $f:[-1,1]\to\mathbb{R}$ definita da $f(0)=\frac{\pi}{2},$ $f(x)=\arctan e^{1/x^2}$ se $x\neq 0$. Allora:

A f non è limitata in [-1,1]. B f è discontinua in x = 0. C f è discontinua in x = -1 e in x = 1. D f è continua in [-1,1].

B6* Sia $f(x) = o\left(\frac{1}{x^2}\right)$ per $x \to +\infty$. Allora,

 $\boxed{\mathbf{A}} \lim_{x \to +\infty} x^2 f(x) = 1. \quad \boxed{\mathbf{B}} \lim_{x \to +\infty} (\ln x) f(x) = 0. \quad \boxed{\mathbf{C}} \quad f(x) \sim \frac{1}{x^{5/2}}. \quad \boxed{\mathbf{D}} \, \forall \epsilon > 0, \lim_{x \to +\infty} x^{2+\epsilon} f(x) = 0.$

B7. Sia $\{a_n\}$ una successione a termini positivi, tale che $\lim_{n\to+\infty} a_n = 0$. Allora $\lim_{n\to+\infty} e^{1/a_n} = \boxed{A}$ 1

 $\boxed{\mathrm{B}} + \infty$. $\boxed{\mathrm{C}}$ 0. $\boxed{\mathrm{D}}$ non esiste.

B8. Sia $f:[0,+\infty)\to\mathbb{R}$ una funzione data. f ammette limite per $x\to+\infty$ SE: A f è continua. B f è monotona. C f è derivabile. D f è limitata.