Analisi Matematica	1 - $12/02/2020$ - Tempo a disposizione:	3h
Matricola	Cognome e Nome	

- **A1.** Determinare per quali $\alpha > 0$ converge la serie numerica $\sum_{n=1}^{\infty} \frac{\ln\left(1 + \frac{2}{n^{\alpha}}\right)}{\sin\left(\frac{2}{n^{1/2}}\right)}.$
- **A2.** Calcolare il valore del limite $\lim_{n \to +\infty} \frac{n^2 \sin\left(\frac{1}{n^2}\right) \cos\left(\frac{2}{n^2}\right)}{e^{6/n^4} 1}$.
- **A3.** Calcolare $\lim_{x \to +\infty} \left[x^3 \ln \left(\frac{x^4 + 1}{x^4} \right) + x \left(e^{\frac{1}{x}} 1 \right) + 3 \cos \left(\frac{x + 1}{x^2} \right) \right]$
- **A4.*** Data $f(x) = \log_2(1+2x) + x$ con $x \in [0, +\infty)$ e denotata con g la sua inversa, calcolare la derivata di g nel punto $f(\frac{1}{2})$.
- **A5.** Determinare la soluzione del problema di Cauchy per x > 0

$$\begin{cases} y' = \frac{2}{x^2}y + \frac{5}{x^2} \\ y(1) = \frac{5}{2} \end{cases}$$

- **A6*** Calcolare una primitiva della funzione $f(x) = x^3 \cos(x^2), x \in \mathbb{R}$.
- **A7*** Scrivere il polinomio di Taylor/Mac Laurin di ordine 2 centrato in 1 della funzione $f(x) = \ln(4+x)$.
- **A8**^{*} Calcolare le soluzioni in \mathbb{C} dell'equazione $z^6 + i \, 4 \, z^4 = 0$.
- **A9.** Calcolare al variare di $\lambda \in \mathbb{R}$ il numero di soluzioni dell'equazione $\frac{2}{\pi} \arctan\left(\frac{x+1}{x}\right) + 7 = \lambda$.
- **A10.*** Determinare per quali valori del parametro $\alpha \in \mathbb{R}$ il seguente integrale risulta convergente $\int_0^2 \frac{\mathrm{e}^{-2x} \sin^2 x}{(\mathrm{e}^{7x}-1)^\alpha} \, \mathrm{d}x$

B1. Sia $f: \mathbb{R} \to \mathbb{R}$ derivabile tale che f(-1) = -1 e f(-2) = -2. A Esiste $n \in \mathbb{N}$ tale che f(n) = n. B Esiste $x \in \mathbb{R}$ tale che f'(x) = 1. C Per ogni $x \in [-2, -1]$ f(x) < 0. D f ha un massimo locale in x = -1.

B2.* Sia $f: \mathbb{R} \to \mathbb{R}$ definita da $f(x) = e^{-x^2}$. Sia $M_n = \max_{x \in [0,n]} f(x)$. Allora (M_n) è una successione A infinitesima B costante C indeterminata D infinita

B3. * Sia $\lim_{n\to\infty} |a_n| = L \neq 0$, finito. Allora A anche $\lim_{n\to\infty} a_n$ esiste finito. B $\lim_{n\to\infty} a_n = 0$. C $\forall \epsilon > 0 \ \exists \bar{n} \in \mathbb{N}$ tale che $\forall n > \bar{n}$ risulta $||a_n| - L| < \epsilon$. D $\exists \bar{n} \in \mathbb{N}$ tale che $\forall n > \bar{n}$ risulta $a_n > L$.

 $\mathbf{B4.}^{\star} \operatorname{Sia} \sum_{n=0}^{\infty} |a_n| \operatorname{convergente.} \operatorname{Allora} \quad \boxed{\underline{\mathbf{A}}} \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| < 1. \quad \boxed{\underline{\mathbf{B}}} \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = 1. \quad \boxed{\underline{\mathbf{C}}} \ \exists \bar{n} \in \mathbb{N} \ \mathrm{tale}$ che $\forall n > \bar{n}$ risulta $a_n > 0$. $\boxed{\underline{\mathbf{D}}}$ converge anche la serie $\sum_{n=0}^{\infty} a_n$.

B5. Sia $f(x) \sim x$ per $x \to +\infty$. A $f(x)(1 + \sin x) \sim f(x)$ per $x \to +\infty$. B $f(x) = o(xe^{1/x})$ per $x \to +\infty$. C $e^{f(x)} \sim e^x$ per $x \to +\infty$. D $f^2(x) \sim x^2$ per $x \to +\infty$.

B6* Sia $f:(a,b)\to\mathbb{R}$, continua in (a,b), tale che $\lim_{x\to a^+}f(x)=\lim_{x\to b^-}f(x)=+\infty$. Allora $\boxed{\mathbf{A}}\ \forall\ x\in(a,b)$ risulta f(x)>0. $\boxed{\mathbf{B}}\ \exists\ c\in(a,b)$ tale che f'(c)=0. $\boxed{\mathbf{C}}\ \exists\ c\in(a,b)$ tale che f(c)=0. $\boxed{\mathbf{D}}\$ la funzione f assume minimo in (a,b).

B7. Sia $f: \mathbb{R} \to \mathbb{R}$ una funzione continua e limitata tale che f(0) = 0. $\boxed{A} (\sup_{\mathbb{R}} f) \cdot (\inf_{\mathbb{R}} f) \leq 0$. \boxed{B} f assume sia valori strettamente positivi sia valori strettamente negativi. \boxed{C} f assume massimo e minimo in \mathbb{R} . \boxed{D} Se f non assume massimo allora $\sup_{\mathbb{R}} f = +\infty$.

B8. Sia $f: \mathbb{R} \to \mathbb{R}$ una funzione continua e tale che $\lim_{x \to +\infty} x^2 f(x) = 0$. Allora $\boxed{\mathbf{A}} \int_{-\infty}^0 |f(x)| \, dx$ converge. $\boxed{\mathbf{B}} \int_0^{+\infty} x f(x) \, dx$ converge. $\boxed{\mathbf{C}} \int_0^{+\infty} |f(x)| \, dx$ converge. $\boxed{\mathbf{D}} \int_0^{+\infty} x^2 f(x) \, dx$ converge.

B9. Siano $f: \mathbb{R} \to \mathbb{R}$ e $g: \mathbb{R} \to \mathbb{R}$ due funzioni convesse e derivabili due volte. Allora $A \cap g \in \mathbb{R}$ convessa, se $g \in \mathbb{R}$ crescente. $A \cap g \in \mathbb{R}$ convessa, se $g \in \mathbb{R}$ convess

Soluzioni della prova del 12/02/20

Parte A

- **A1.** Grazie alle stime asintotiche notevoli, il termine generale della serie è asintotico a $\frac{1}{n^{\alpha-\frac{1}{2}}}$ per $n \to +\infty$. La serie $\sum_{n} \frac{1}{n^{\alpha-\frac{1}{2}}}$ converge se $\alpha-\frac{1}{2}>1$, ossia per $\alpha>\frac{3}{2}$. Per il criterio del confronto asintotico anche la serie data converge per $\alpha>\frac{3}{2}$
- **A2.** La funzione $f(x) = \frac{1}{x}\sin x \cos(2x)$ ammette il seguente sviluppo per $x \to 0$

$$f(x) = \frac{1}{x} \Big(x - \frac{1}{6} x^3 + o(x^3) \Big) - \Big(1 - \frac{1}{2} (2x)^2 + o(x^2) \Big) = 1 - \frac{1}{6} x^2 - 1 + 2x^2 + o(x^2) = \frac{11}{6} x^2 + o(x^2)$$

Per $x = \frac{1}{n^2}$ si ha $n^2 \sin \frac{1}{n^2} - \cos \left(\frac{2}{n^2}\right) \sim \frac{11}{6} \frac{1}{n^4}$, per $n \to +\infty$. Al denominatore invece:

$$e^{6/n^4} - 1 \sim \frac{6}{n^4}$$

per $n \to +\infty$. Pertanto il limite precedente è pari a $\frac{11}{36}$.

A3. Dalle stime asintotiche per le funzioni elementari si ha

$$x^{3} \ln \left(\frac{x^{4}+1}{x^{4}}\right) = x^{3} \ln \left(1+\frac{1}{x^{4}}\right) \sim x^{3} \frac{1}{x^{4}} = \frac{1}{x}$$
$$x\left(e^{\frac{1}{x}}-1\right) \sim x^{\frac{1}{x}} = 1$$

per $x \to +\infty$. Pertanto il limite richiesto è 0+1+3=4.

- **A4.** Dal teorema di derivazione della funzione inversa risulta $g'(y_0) = \frac{1}{f'(x_0)}$, con $y_0 = f(x_0)$.

 Con i dati del problema $y_0 = f\left(\frac{1}{2}\right)$ e $f'\left(\frac{1}{2}\right) = 1 + \log_2 e$. Pertanto $g'(f\left(\frac{1}{2}\right)) = \frac{1}{1 + \log_2 e}$.
- **A5.** Dalla formula risolutiva per la soluzione del problema di Cauchy per un'equazione lineare del primo ordine si ha

$$y(x) = \frac{5}{2}e^{-A(x)} + e^{-A(x)} \int_{1}^{x} e^{A(t)} \frac{5}{t^{2}} dt,$$

con $A(x) = \int_1^x -\frac{2}{t^2} dt = \frac{2}{x} - 2$. Sviluppando i calcoli

$$\int_{1}^{x} e^{\frac{2}{t} - 2} \frac{5}{t^{2}} dt = 5e^{-2} \int_{1}^{x} e^{\frac{2}{t}} \frac{1}{t^{2}} dt = -\frac{5}{2} e^{-2} \left[e^{\frac{2}{t}} \right]_{1}^{x} = -\frac{5}{2} e^{\frac{2}{x} - 2} + \frac{5}{2}.$$

La soluzione è pertanto $y(x) = 5e^{-\frac{2}{x}+2} - \frac{5}{2}$.

A6. Con il cambio di variabile $x^2 = t$, 2xdx = dt si ha

$$\int x^3 \cos(x^2) dx = \int x^2 \cos(x^2) \ x dx = \frac{1}{2} \int t \cos(t) dt = \frac{1}{2} \left(t \sin t - \int \sin t dt \right)$$
$$= \frac{1}{2} \left(t \sin t + \cos t \right) = \frac{1}{2} \left(x^2 \sin(x^2) + \cos(x^2) \right).$$

- **A7.** Dai calcoli diretti, risulta $f(1) = \ln 5$, $f'(1) = \frac{1}{5}$, $f''(1) = -\frac{1}{25}$, da cui il polinomio richiesto è $f(1) + f'(1)(x-1) + \frac{1}{2}f''(1)(x-1)^2 = \ln 5 + \frac{1}{5}(x-1) \frac{1}{50}(x-1)^2$.
- **A8.** L'equazione si riscrive come $z^4(z^2+4i)=0$, che ammette la soluzione nulla e le soluzioni di $z^2+4i=0$, ossia $z^2=-4i$, che sono date da $\pm\left(\sqrt{2}-i\sqrt{2}\right)$.
- **A9.** L'equazione assegnata si riscrive come arctan $\left(\frac{x+1}{x}\right) = (\lambda-7)\pi/2$. Il numero di soluzioni corrisponde al numero di intersezioni tra il grafico di arctan $\left(\frac{x+1}{x}\right)$ e la retta orizzontale $y=(\lambda-7)\pi/2$. Si trova dunque 1 soluzione se $(\lambda-7)\pi/2\in\left[-\frac{\pi}{2},\frac{\pi}{2}\right]\setminus\left\{\frac{\pi}{4}\right\}$ e nessuna soluzione negli altri casi; pertanto una soluzione se $6\leq\lambda\leq8$ e $\lambda\neq\frac{15}{2}$, nessuna negli altri casi.
- **A10.** Occorre studiare l'integrabilità della funzione $f(x) = \frac{e^{-2x} \sin^2 x}{(e^{7x} 1)^{\alpha}}$ vicino a 0. A tal proposito basta osservare che $f(x) \sim \frac{x^2}{(7x)^{\alpha}} = \frac{1}{7^{\alpha}} \frac{1}{x^{\alpha-2}}$ per $x \to 0^+$ e che $\frac{1}{x^{\alpha-2}}$ è integrabile vicino a 0 se $\alpha 2 < 1$, ossia per $\alpha < 3$. Per il criterio del confronto asintotico anche l'integrale dato converge per $\alpha < 3$.

Parte B

- **B1.** B per il Teorema di Lagrange.
- **B2.** B dal calcolo diretto si trova che $M_n = f(0) = 1$ per ogni n.
- **B3.** C definizione di limite.
- **B4.** D per il criterio della convergenza assoluta per serie.
- **B5.** $\boxed{\mathrm{D}}$ dalle proprietà della relazione \sim .
- **B6.** D scegliamo $x_0 \in (a, b)$ con $f(x_0) > 0$ e con la definizione di limite con $M = f(x_0)$ troviamo un intorno destro di a, $(a, a + \delta)$ e un intorno sinistro di b, $(b \delta, b)$ in cui $f > f(x_0)$. Per il teorema di Weierstrass, esiste $x_1 \in [a + \delta, b \delta]$ tale che $f(x) \ge f(x_1)$ per ogni $x \in [a + \delta, b \delta]$. Sia \bar{x} il punto tra x_0 e x_1 in cui f assume il valore più piccolo. Allora \bar{x} è punto di minimo in tutto (a, b).
- **B7.** A Per le proprietà di estremo superiore ed estremo inferiore $\sup_{\mathbb{R}} f \geq f(0) = 0$ e $\inf_{\mathbb{R}} f \leq f(0) = 0$.
- **B8.** C Dalla definizione di limite si ha che $x^2|f(x)| \le 1$ definitivamente per $x \to +\infty$, ossia $|f(x)| \le \frac{1}{x^2}$. Per il criterio del confronto, essendo $\frac{1}{x^2}$ integrabile all'infinito, anche |f(x)| lo è.
- **B9.** $\boxed{\mathbb{D}}[f(g(x))]'' = [f'(g(x))g'(x)]' = f''(g(x))[g'(x)]^2 + f'(g(x))g''(x) \ge 0$, essendo $f'', g'', f' \ge 0$.
- **B10.** A un argomento di $z \approx -\pi/6$. Un argomento di $z^{10} \approx -\frac{10}{6}\pi = -\frac{5}{3}\pi$ che differisce da $\frac{\pi}{3}$ per un multiplo di 2π .