Analisi Matematica	$\frac{1}{1} - \frac{07}{02} / \frac{25}{25} - \frac{\text{Ten}}{1}$	npo a disposizion	e: 2h e 3	0 minuti	<u> </u>
Matricola	Cognome		Nome		
Ing. Elettronica e l	Informatica \Box	Bioingegneria	a 🗆	Ing.	${\rm Industriale} \ \Box$
A1. Sia $z = 7e^{\frac{\pi}{4}i}$. Ca	lcolare $\operatorname{Im}(z^{14}\bar{z}^{9})$.				
Risolvere in $\mathbb C$ l'equaz	ione $((z + \bar{z})^2 + 14)((z + \bar{z})^2 + 14)$	$(z-\bar{z})^2+9)=0.$			
A2 * Sia $f(x) = \frac{\ln(1 + 1)}{\sinh(2x)}$	$\frac{+(x-2)^{\alpha}}{\alpha[(x-2)^{\frac{1}{2}}]}, x > 2. \text{ Per}$ Per quali α il prolung				uità da destra in
A3. [⋆] Determinare il	punto di massimo asso	oluto x_M e il massir	mo assolut	to $M \operatorname{di} f$	$f:[0,+\infty)\to\mathbb{R}$
	$\sin\left(\sqrt{\frac{x}{x^2+2}}\right); x_M =$		M =		
Per quali $\lambda \in \mathbb{R}$ l'equa	zione $f(x) = \lambda$ ammet	te due radici distinte	e?		
A4. Trovare la soluzio	one del problema di Ca	auchy $\begin{cases} u'(t) + \frac{6t}{1+t^2} \\ u(0) = 12. \end{cases}$	$u\left(t\right) =8t,$,	
A5. Per quali $\alpha \in \mathbb{R}$ converge la serie $\sum_{n=1}^{\infty} n^{\alpha} \left(1 - \cos\left(\frac{1}{n^2}\right)\right)^5 \left(1 - e^{-5/n^3}\right)$?					
A6. Calcolare il segu	nente integrale: $I = \int_{-}^{}$	$\frac{x+64}{1+(8x)^2} dx.$			
	nzione $f:(0,+\infty)\to \mathbb{R}$ della f centrato in $x_o=$		$= 2\sin(51)$	$\operatorname{n} x$). Scri	vere il polinomio
A8. Determinare per	quali valori di $\alpha > 0$ ris	ulta infinito $\lim_{x\to 0^+} \left(1\right)$	$1+2x^2\big)^{\frac{1}{3x}}$	$\overline{\alpha}$;	
Per $\alpha = 2$, calcolare il	corrispondente valore	del limite.			

B1. * Sia
$$\sum_{n=1}^{+\infty} a_n$$
 una serie convergente con $a_n \neq 0$ per ogni n . Allora $\boxed{A} \sum_{n=1}^{+\infty} |a_n|$ converge

$$\boxed{\mathbf{B}} \sum_{n=1}^{+\infty} \frac{a_{n+1}}{a_n} \text{ converge } \boxed{\mathbf{C}} \sum_{n=1}^{+\infty} \frac{a_n + a_{n+1}}{2} \text{ converge } \boxed{\mathbf{D}} \sum_{n=1}^{+\infty} a_n^2 \text{ converge }$$

- **B2.** Sia $f:(-3,-1)\to\mathbb{R}$ definita da $f(x)=\tan(\arcsin(x+2))$. Allora A f è strettamente crescente in (-3,-1). B f è dispari. C f è strettamente decrescente in (-3,-1). D $\exists x_o \in (-3,-1)$ tale che f non è continua in x_o .
- **B3.** Sia $f: \mathbb{R} \to \mathbb{R}$ tale che $\lim_{x \to +\infty} |f(x)| = +\infty$. Allora A $\forall K > 0 \ \exists M > 0$ tale che $\forall x > K$ risulta |f(x)| > M. B $\exists M > 0$ tale che $\forall x > M$ risulta |f(x)| > 0. C $\lim_{x \to +\infty} \frac{|f(x)|}{\ln |f(x)|} = 1$. D $\lim_{x \to +\infty} f(x) = -\infty$.
- **B4.** Siano $f: \mathbb{R} \to \mathbb{R}$ una funzione derivabile e 0 < a < b. Allora A esiste $\xi \in]a,b[$ t.c. $f(b)-f(a)=f'(\xi)(b^2-a^2)$ B esiste $\xi \in]a^2,b^2[$ t.c. $f(b^2)-f(a^2)=f'(\xi)(b^2-a^2)$ C esiste $\xi \in]a^2,b^2[$ t.c. $f(b^2)-f(a^2)=f'(\xi)(b^2-a^2)$
- **B5.** Data $f: \mathbb{R} \to \mathbb{R}$, due volte derivabile con continuità in \mathbb{R} , sia $P_2(x;1) = 1 2x + 2x^2$ il polinomio di Taylor di ordine 2 della f centrato in $x_o = 1$. Allora A f'(1) = 2. B f''(1) = 2. C f'(1) = -2. D f(1) = 0.
- **B6.** Sia $f: \mathbb{R} \to \mathbb{R}$ una funzione derivabile in x_o . Definiamo $g(h) = \frac{f(x_o + h) f(x_o)}{h}$ per $h \neq 0$. Allora $A = \begin{bmatrix} A \end{bmatrix} g(h) = f'(x_o) + o(1)$ per $h \to 0$ $A = \begin{bmatrix} A \end{bmatrix} g(h) = f'(x_o) + o(1)$ per $h \to 0$ $A = \begin{bmatrix} A \end{bmatrix} g(h) = f'(x_o) + o(h)$ per $h \to 0$ $A = \begin{bmatrix} A \end{bmatrix} g(h) = f'(x_o) + o(h)$ per $h \to 0$ $A = \begin{bmatrix} A \end{bmatrix} g(h) = f'(x_o) + o(h)$ per $h \to 0$ $A = \begin{bmatrix} A \end{bmatrix} g(h) = f'(x_o) + o(h)$ per $h \to 0$
- **B7.** Sia (a_n) una successione di numeri reali tale che $\lim_{n\to +\infty} a_n = L \in (-1,1)$. Allora: A Esiste $\lim_{n\to +\infty} e^{|a_n|} = L_1 \in (0,1)$. B $\lim_{n\to +\infty} (-1)^n a_n$ non esiste. C Esiste $\varepsilon > 0$ tale che per ogni \overline{n} esiste $n \geq \overline{n}$ tale che $|a_n L| > \varepsilon$. D Esiste $\lim_{n\to +\infty} \arctan(a_n) = L_2 \in (-\frac{\pi}{4}, \frac{\pi}{4})$.
- **B8.** Sia $f: \mathbb{R} \to \mathbb{R}$ una funzione monotona e $F: \mathbb{R} \to \mathbb{R}$ la funzione definita da $F(x) = \int_0^x f(t) dt$. Allora:
- $oxed{A}$ F è derivabile in \mathbb{R} . $oxed{B}$ Se $x \cdot f(x) \geq 0$ per ogni $x \in \mathbb{R}$, allora $F(x) \geq 0$ per ogni $x \in \mathbb{R}$. $oxed{C}$ Se f è crescente, allora $F(x) \geq 0$ per ogni $x \in \mathbb{R}$. $oxed{D}$ Se f è continua, allora $F(x) \geq 0$ per ogni $x \in \mathbb{R}$.