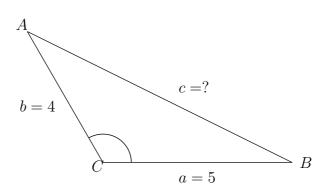
RECUPERO DEL DEBITO FORMATIVO - 17 OTTOBRE 2014

COGNOME e NOME	NUMERO di MATRICOLA
CORSO di LAUREA	

1. Siano $A=\{x\in\mathbb{N}: -1\leq x<6\}$ e $B=\{x\in\mathbb{R}: x\geq 4\}.$ Allora $A\cap B=$

2. Scomporre in fattori irriducibili il polinomio $p(x) = 3x^3 - 6x^2 + 3x$.


$$p(x) =$$

3. Determinare la distanza tra i punti (-5,0) e $(1,2\sqrt{7})$.

4. Determinare per quale valore reale del parametro a la disequazione $\frac{1}{5}x^2-2x+a\leq 0$ ammette la seguente soluzione: $\{-1 \le x \le 11\}$.

$$\Box \ a = -11 \qquad \Box \ a = -\frac{11}{3} \qquad \Box \ a = -\frac{11}{4} \qquad \Box \ a = -\frac{11}{5} \qquad \Box \ a = 0$$

5. Determinare la lunghezza del lato c del triangolo in figura, sapendo che i lati a e bhanno le lunghezze riportate, in opportune unità di misura, e che $\hat{C} = \frac{2}{3}\pi$.

6. Determinare le radici dell'equazione $3x^2 + x - 2 = 0$.

$$x_1 = \boxed{ }$$
 $x_2 = \boxed{ }$

7. Risolvere la disequazione $\log_4(x+7)<0.$

8. Determinare le radici **reali** dell'equazione $e^{x^3-125}=1$.

9. Calcolare: $\log_5(25) - \log_8(1) + 5\log_6(\frac{1}{6}) =$

10.	Per quali valori $x \in [0, 6\pi]$ si ha $\cos\left(\frac{x}{3}\right) \le \frac{1}{2}$?
11.	Scrivere l'equazione cartesiana della retta passante per il punto (1,5) e parallela alla
	retta di equazione $y = -4x + 1$.
12.	Determinare il raggio e il centro della circonferenza di equazione $x^2-2x+y^2+4y=20$
	r = $C =$
13.	La retta di equazione $y+4x+7=0$ e la retta di equazione $4y-x+3=0$ sono tra loro
	\Box perpendicolari \Box parallele \Box incidenti ma non perpendicolari
14.	Determinare le radici $x \in [0, 2\pi]$ della seguente equazione trigonometrica:
	$\sin\left(x + \frac{\pi}{6}\right) - \cos\left(x + \frac{\pi}{6}\right) = 0$
15.	Risolvere la disequazione $x(x^2 - 4) < 0$.
16.	L'equazione $y=\frac{1}{5}x^2+\frac{1}{5}y^2-3$ rappresenta una \Box ellisse \Box circonferenza \Box parabola \Box iperbole
17.	Risolvere l'equazione $\sqrt[3]{x^2 - 26} = -1$.
18.	Determinare l'intersezione tra la parabola $y = 3x^2 - 6x + 2$ e la retta $y = 3x + 2$.
19.	Quanti sono gli $x \in [-\pi, \pi]$ che verificano l'equazione
	$\tan x = 5\pi x ?$
	$\square \ 0$ $\square \ 1$ $\square \ 2$ $\square \ 3$ $\square \ 4$ $\square \ infiniti$
20.	Determinare tutti i valori del parametro reale k per cui la parabola di equazione
	$y = kx^2 - k^3x + 7$ ha ascissa del vertice pari a 32.
	Tempo: 1 ora Punteggio per ogni domanda: 1 punto se la risposta è esatta; 0 punti se la risposta è sbagliata o non è data. La prova è superata se il punteggio totale ottenuto è ≥ 8.