Analisi Matematica 17/6/2016	I Appello	Cognome: Nome:	
☐ Autorizzo la pubblicazione dell'esit	to dello scritto on-line	Firma:	
\square In caso di esito sufficiente della prova scritta, chiedo di sostenere la prova orale facoltativa. Per ognuna delle seguenti domande, verrà assegnato il punteggio indicato sulla destra in caso di risposta corretta, oppure 0 punti in caso di risposta sbagliata o non data. Si supera la prova scritta se il punteggio totale risulta ≥ 18 e se il punteggio della prima parte ≥ 12 . Il tempo a disposizione è 2 ore e 30 minuti.			
PRIMA PARTE			
1. Sia $z = 2 + i$, e sia $C = \operatorname{Im} \left[\frac{(z)}{z} \right]$ Allora $\frac{10C}{3} = \underline{\qquad -1}$.			2 pt.
2. Sia $l = \lim_{x \to +\infty}$	$\left[\frac{4\cos x}{x^2} + \frac{3+x^2 + \ln x^3}{x^2 + x + \sin x}\right]$	$-6e^x\sin(e^{-x})\bigg].$	2 pt.
Allora $2l = \underline{\hspace{1cm}} -10 \underline{\hspace{1cm}}$.			
3. Sia $f(x) = \pi \frac{\cos(2x^2 + \pi)}{x^2 + 1} + 2\sin(x)$	$n(3\pi x) + 3\pi$, e sia $t(x)$ la fun	nzione che rappresenta la retta tangente	
al grafico di f nel punto $(0, f(0))$. Allora $\frac{t(1)}{\pi} = \underline{\qquad \qquad 8}$.			2 pt.
4. Sia dato l'integrale definito			
$I = \int_{-\pi}^{\pi}$	$\left[2\cos(x^4)\sin(\arctan x) + 3x\right]$	$\cos x + 4$] dx .	2 pt.
Allora $I = 8\pi$.			
5. Sia $f(x) = \frac{1}{x+1} - 2 \arctan x + 3$ Allora $12 g'(5) = \underline{\qquad -2}$		one inversa.	2 pt.
6. Sia $y(x)$ la soluzione del problema di Cauchy			
	$\begin{cases} y' = \frac{2 - 3\frac{y}{x}}{3 - 2\frac{y}{x}} \\ y(1) = 3. \end{cases}$		2 pt.
Tenendo conto che la funzione $y=y(x)$ si può prolungare in $x=0$, si determini $[y(0)]^2=$ 1			
	ssunto dalla restrizione della	$(x,y)=4x^2+3y^2,\ \forall(x,y)\in\mathbb{R}^2.$ Siano: a funzione f a $Q;$ m il valore minimo a $M+m=\underline{\qquad \qquad 4}$.	2 pt.
8. Sia $z = g(x, y)$, $(x, y) \in \mathbb{R}^2$, l'equ $z = \arctan[x(y+1)] - xe^y$, (x, y) . Allora $g(3, 4) = \underline{-4 + \pi/4}$	nazione del piano tangente a (x_o, y_o, z_o)	lla superficie S di equazione cartesiana = $(1, 0, z(1, 0))$ di S .	2 pt.

9. Sia $D=\left\{(x,y)\in\mathbb{R}^2:0\leq x\leq 1,\,x\leq y\leq 2-x^2\right\}$ una lamina materiale di densità costante. Allora l'ascissa del baricentro $x_G=\underline{5/14}$

2 pt.

10. Sia Σ la superficie regolare di equazioni parametriche $\mathbf{r}(u,v)=(\frac{2}{3}(\sqrt{u^3}+\sqrt{v^3}),\frac{2}{3}(\sqrt{u^3}-\sqrt{v^3}),\sqrt{2}v),$ con $(u, v) \in E$, dove $E = \left\{ (u, v) \in \mathbb{R}^2 : 0 \le v \le 1, \frac{1}{v+1} \le u \le \sqrt{v+1} \right\}$. Allora l'area della superficie $a(\Sigma) = \frac{16[4\sqrt[4]{2} - 1]/27 - (4\ln 2)/3}{16[4\sqrt[4]{2} - 1]/27 - (4\ln 2)/3}$

 $2 \, \mathrm{pt}$.

SECONDA PARTE

11. Sia $f(x) = \frac{x \sin x}{x^6 + 2}$, definita $\forall x \in \mathbb{R}$. Quali delle seguenti proprietà ha f in tutto il suo dominio? A) continua, B) derivabile, C) sup. limitata, D) inf. limitata, E) monotona, F) periodica, G) pari, H) dispari. La risposta è: ABCDG

12. Enunciare il teorema di Lagrange per una funzione $f:[a,b]\to\mathbb{R}$. Solutione: ...

13. Sia $\alpha \in \mathbb{R}$ un parametro. L'integrale improprio $\int_{1}^{+\infty} \frac{e^{(\alpha^2+1)x}}{x^2+1} dx$ è convergente per:

(a) $\alpha > -1$

- (18) nessun $\alpha \in \mathbb{R}$
- (c) $\alpha > 1/2$
- (d) $\alpha < 0$
- (e) tutti gli $\alpha \in \mathbb{R}$
- (f) $\alpha \leq -1$
- 14. Si considerino le serie numeriche

- 1. $\sum_{n=0}^{\infty} \frac{1}{n^2 + 2^n}$ 2. $\sum_{n=1}^{\infty} \frac{1}{n^2 \ln(n+1)}$
- 3. $\sum_{n=1}^{\infty} \frac{4^n}{3^n + \sin n}$ 4. $\sum_{n=0}^{\infty} \frac{\sin(n+1)}{n^3+4}$
- 5. $\sum_{n=1}^{\infty} \frac{n \ln(n+4)}{n^2 + 1}$
- 6. $\sum_{n=1}^{\infty} \frac{n!}{n + \ln(n+1)}$
- Allora, le serie convergenti sono : __