Analisi Matematica	III Appello	Cognome:	
1/9/2016		Nome:	
\square Autorizzo la pubblicazione dell'esito dello scritto on-line $\underline{\text{Firma:}}$			
\square In caso di esito sufficiente della prova scritta, chiedo di sostenere la prova orale facoltativa. Per ognuna delle seguenti domande, verrà assegnato il punteggio indicato sulla destra in caso di risposta corretta, oppure 0 punti in caso di risposta sbagliata o non data. Si supera la prova scritta se il punteggio totale risulta ≥ 18 e se il punteggio della prima parte ≥ 12 . Il tempo a disposizione è 2 ore e 30 minuti.			
PRIMA PARTE			
1. Sia $z = 3 + 2i$, e sia $C = \text{Re}$	$\left[\frac{(z+4)}{z+1} + \operatorname{Im}(z\overline{z})\right].$		
Allora $C = 8/5$.			2 pt.
2. Sia $l = \lim_{x \to -\infty} \left[\frac{4 \cos x}{x^2} + \frac{3 - x^2 + \ln x^4}{x^2 + x + \sin x} - 4 e^{-2x} [1 - \cos(e^x)] \right].$			2 pt.
Allora $l = \phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	$x^2 + x + \sin x$	J	
3. Sia $f(x) = \pi \frac{\sin(2x^2)}{x^3 + 1} + 2\cos(3\pi x)$, e sia $t(x)$ la funzione che rappresenta la retta tangente al grafico			
di f nel punto $(0, f(0))$. Allora $t(1) = \underline{\qquad \qquad 2}$.			2 pt.
4. Sia dato l'integrale definito			
$I = \int_{-\pi}^{\pi} \left[3 \cos(x^4) \operatorname{arctg}(x^5) + 3(x+1) \cos^2 x + 2 \right] dx.$			2 pt.
Allora $I = _{\underline{}} 7\pi$.			
5. Sia $f(x) = \frac{1}{x+1} - 2\sin x + 3e^{-x} + 2$, e sia $g(y)$ la funzione inversa.			
Allora $g'(6) = \underline{-1/6}$. 6. Sia $y(x)$ la soluzione del problema di Cauchy			2 pt.
			2 pt.
	$\begin{cases} y' = \frac{xe^{-y^2}}{y} \\ y(0) = 1 . \end{cases}$		2 pt.
Si determini $y(\sqrt{e^2 - e}) = \underline{\hspace{1cm}}$	$\sqrt{2}$		
7. Sia $Q = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 4\}$ e $f(x,y) = e^{4x^2 + 9y^2}$, $\forall (x,y) \in \mathbb{R}^2$. Siano: M il valore massimo assoluto assunto dalla restrizione della funzione f a Q ; m il valore minimo assoluto assunto dalla restrizione della funzione f a Q . Allora $m + \ln M = 37$.			
8. Si considerino la funzione $f(x,y) = \sin(x-y) + e^{x+y}$, $(x,y) \in \mathbb{R}^2$, il versore $\mathbf{v} = (\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2})$ e il punto			
$(x_o, y_o) = (1, 1)$. Allora $\frac{\partial f}{\partial \mathbf{v}}(x_o, y_o) = \underline{\qquad \sqrt{2} e^2}$			2 pt.

 $\begin{cases} x(t) = \sin^3 t \\ y(t) = \cos^3 t, \end{cases} \quad t \in \left[0, \frac{\pi}{2}\right].$

2 pt.

9. Sia Γ l'arco piano di equazioni parametriche

2 pt.

SECONDA PARTE

- **11.** Sia $f(x) = \frac{x^5 \sin |x|}{x^4 + 3}$, definita $\forall x \in \mathbb{R}$. Quali delle seguenti proprietà ha f in tutto il suo dominio?
 - A) continua, B) derivabile, C) sup. limitata, D) inf. limitata, E) monotona, F) periodica, G) pari,
 - H) dispari. La risposta è: A B H

3 pt.

12. Enunciare il teorema di Rolle per una funzione $f:[a,b]\to\mathbb{R}$. Soluzione: ...

13. Sia $\alpha \in \mathbb{R}$ un parametro. L'integrale improprio $\int_{1}^{+\infty} x e^{\alpha x} dx$ è convergente per:

4 pt.

- (a) $\alpha < -1$
- (b) nessun $\alpha \in \mathbb{R}$
- (c) $\alpha > 1/2$
- (d) $\alpha < 0$
- (e) tutti gli $\alpha \in \mathbb{R}$
- (f) $\alpha \leq 0$
- 14. Si considerino le serie numeriche

4 pt.

- 1. $\sum_{n=1}^{\infty} \frac{1}{n^3 + \sin n}$ 2. $\sum_{n=1}^{\infty} \frac{e^n}{n^2 + 2}$
- $\sum_{n=1}^{\infty} n^2 + 2$ 3. $\sum_{n=1}^{\infty} \frac{\ln n}{n^3 + 1}$
- 4. $\sum_{n=1}^{\infty} \frac{n!}{(2n)!}$
- $5. \sum_{n=1}^{\infty} \frac{2 + \sin n}{\ln(n+1)}$
- 6. $\sum_{n=1}^{\infty} \frac{\sin^2 n}{n^2 \ln(n+1)}$
- Allora, le serie convergenti sono : ___1, 3, 4, 6