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1. Determine the general solution of the linear homogeneous system

z′ = Az, where A =
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 .
2. Consider the Cauchy Problem{

y′ = e
1
y (y + 2)

y(xo) = yo,
(xo, yo) ∈ D = R2\{y = 0}.

Determine the main properties of the solution and draw its qualitative
graph, as (xo, yo) ranges in D.

3. Compute the Fourier Transform of the tempered distribution u = signx,
taking into account that in the sense of distributions (signx)′ = 2δ.

Then, relying on the previous result, and on the fundamental properties
of the Fourier transform, compute

F(x|x|) = F(x2signx).

4. Consider the Hilbert space H = L2(R) and its complete orthonormal
system {un}, n = 0, 1, . . . where
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Given the function
f(x) = (7x− 4)e−x

2/2,

compute its Fourier expansion f =
∑
n

cnun, cn = (f, un), and relying on

the fundamental relation ‖f‖2 =
∑
n

|cn|2, determine the value of a proper

integral over the interval (−∞,∞).


