Il teorema di Sard

Alessandro Ghigi

25 ottobre 2014

1 Sottoricoprimenti numerabili

Esercizio 1. Sia X uno spazio topologico e sia $Y \subset X$ un sottospazio. Se $\{A_i\}_{i\in I}$ è una base della topologia di X, allora $\{A_i\cap Y\}_{i\in I}$ è una base per la topologia indotta su Y. In particolare, se X ammette una base numerabile, allora anche Y con la topologia indotta è uno spazio a base numerabile.

Lemma 1. Se X è uno spazio topologico, \mathfrak{B} è una base di X e \mathfrak{A} è un ricoprimento aperto di X, allora la famiglia

$$\mathfrak{B}' := \{ B \in \mathfrak{B} : \text{ esiste } A \in \mathfrak{A} \text{ tale che } B \subset A \}$$

è ancora una base di X.

Dimostrazione. Se $A \subset X$ è un aperto e $x \in A$, allora esiste $U \in \mathfrak{A}$ tale che $x \in U$. Dunque $x \in A \cap U$ e quindi esiste $B \in \mathfrak{B}$ tale che $x \in B \subset A \cap U$. Dunque $B \in \mathfrak{B}'$ e A è unione di aperti appartenenti a \mathfrak{B}' .

Teorema 2 (Lindelöf). Se X ha una base numerabile allora ogni ricoprimento di X ammette un sottoricoprimento numerabile.

Dimostrazione. Sia \mathfrak{A} un ricoprimento di X e sia \mathfrak{B} una base numerabile di X. Sia \mathfrak{B}' la base costruita nel lemma precedente. Anche \mathfrak{B}' è numerabile. Ma per ogni $B \in \mathfrak{B}'$ esiste $A_B \in \mathfrak{A}$ tale che $B \subset A_B$. Allora la famiglia $\mathfrak{A}' = \{A_B\}_{B \in \mathfrak{B}'}$ è numerabile ed è contenuta in \mathfrak{A} . Se $x \in X$, allora esiste $B \in \mathfrak{B}'$ tale che $x \in B$. Dunque $x \in A_B$. Pertanto \mathfrak{A}' è un sottoricoprimento numerabile di \mathfrak{A} .

2 Insiemi di misura nulla

Su \mathbb{R}^n c'è una misura privilegiata, la misura di Lebesgue, che indichiamo con m_n . Su una varietà differenziabile priva di strutture aggiuntive non c'è una misura privilegiata. Tuttavia è possibile definire il concetto di insieme di misura nulla.

Ricordiamo innanzitutto la formula del cambiamento di variabile negli integrali. Se E è un insieme misurabile contenuto in un aperto $\Omega_1 \subset \mathbb{R}^n$, $f: E \to \mathbb{R}$ è una funzione sommabile e $\varphi: \Omega_1 \to \Omega_2$ è un diffeomorfismo di classe C^1 allora

$$\int_{\varphi(E)} f(y)dy = \int_{E} f(\varphi(x))|\det d\varphi(x)|dx. \tag{1}$$

In particolare

$$m_n(\varphi(E)) = \int_E |\det d\varphi(x)| dx.$$

Pertanto se E ha misura nulla e φ è un diffeomorfismo definito su un intorno di E, allora anche $\varphi(E)$ ha misura nulla.

Definizione 3. Se M è una varietà differenziabile n-dimensionale diciamo che un sottoinsieme $E \subset M$ ha misura nulla se per ogni carta (U, φ) di M si ha $m_n(\varphi(E \cap U)) = 0$.

Lemma 4. L'unione numerabile di insiemi di misura nulla ha misura nulla.

Dimostrazione. Se $\{E_i\}_{i\in\mathbb{N}}$ sono sottoinsiemi di M^n di misura nulla e (U,φ) è una carta di M,

$$\varphi(\cup_i E_i \cap U) = \cup_i \varphi(E_i \cap U),$$

dunque

$$\mathrm{m}_n(\varphi(E\cap U)) \leq \sum_i \mathrm{m}_n(\varphi(E_i\cap U)) = 0$$

perché \mathbf{m}_n è subadditiva. Dunque anche $\cup_i E_i$ ha misura nulla. \square

Lemma 5. Un insieme $E \subset M$ ha misura nulla se e solo se per ogni $p \in E$ esiste una carta (U, φ) tale che $p \in U$ e $m(\varphi(U \cap E)) = 0$.

Dimostrazione. La condizione è ovviamente necessaria. Vediamo che è sufficiente. Per ogni $p \in M$ fissiamo una carta (U_p, φ_p) tale che $p \in U_p$ e $\mathrm{m}(\varphi_p(U_p \cap E)) = 0$. Siccome M ha base numerabile, possiamo estrarre un sottoricoprimento numerabile $\{U_{p_i}\}_{i \in \mathbb{N}}$ del ricoprimento $\{U_p\}_{p \in M}$. Poniamo $U_i := U_{p_i}$ e $\varphi_i = \varphi_{p_i}$. Allora $\varphi_i(U_i \cap E)$ ha misura nulla. Se (U, φ) è una carta qualsiasi su M, l'insieme $\varphi_i(U \cap U_i \cap E)$ ha misura nulla perché è contenuto in $\varphi_i(U_i \cap E)$. Dunque anche $\varphi(U \cap U_i \cap E) = \varphi \varphi_i^{-1} (\varphi_i(U \cap U_i \cap E))$ ha misura nulla. Ma

$$\varphi(U \cap E) = \bigcup_{i=1}^{\infty} \varphi(U \cap U_i \cap E),$$

quindi $m_n(\varphi(U \cap E)) = 0$.

Lemma 6. Il complementare di un sottoinsieme di misura nulla $E \subset M$ è denso in M.

Dimostrazione. Poiché gli aperti coordinati formano una base della topologia di M, è sufficiente provare che ogni aperto coordinato interseca $M \setminus E$. Se (U, φ) è una carta, $m_n(\varphi(U \cap E)) = 0$. Dunque $m_n(\varphi(U \setminus E) = m_n(\varphi(U)) > 0$, poiché ogni aperto di \mathbb{R}^n ha misura positiva. Pertanto $\varphi(U \setminus E) \neq \emptyset$ e $U \setminus E \neq \emptyset$.

3 Il teorema di Sard

Definizione 7. Sia $f: M \to N$ è una applicazione liscia fra varietà differenziabili. Diciamo che $x \in M$ è un punto critico di f se $df(x): T_xM \to T_{f(x)}N$ non è suriettivo. L'insieme dei punti critici di f si indica con Crit(f). $y \in N$ è un valore critico di f se $y \in f(Crit(f))$. Un punto $y \in N \setminus f(Crit(f))$ è detto valore regolare f.

Teorema 8 (di Sard). Se $f: M^m \to N^n$ è una applicazione liscia, allora $f(\operatorname{Crit}(f))$ ha misura nulla. L'insieme dei valori regolari è denso in N.

Dimostrazione. Procediamo per induzione su $m = \dim M$.

Se m=n=0 non esistono punti critici. Se invece n>0 il risultato è ovvio perché f(M) è un insieme numerabile.

Procediamo supponendo che m > 0 e che il risultato sia vero per applicazioni definite su varietà di dimensione < m.

Incominciamo dimostrando l'affermazione seguente:

Fatto 9. Se $W \subset \mathbb{R}^m$ è un aperto che contiene il cubo $K = [0,1]^m$ e $f: W \to \mathbb{R}^n$ è una applicazione liscia, allora posto $C := \text{Crit}(f) \cap K$ si ha $m_n(f(C)) = 0$.

La dimostrazione si farà in tre tappe, spezzando C, e quindi la sua immagine, in tre pezzi, tutti di misura nulla.

Sia C_i l'insieme dei punti di K dove si annullano tutte le derivate di f fino all'ordine i incluso:

$$C_i = \{x \in K : D^{\alpha} f(x) = 0, |\alpha| \le i\}.$$

 $C \supset C_1 \supset C_2 \supset \cdots \supset C_k \supset \cdots$ è una successione decrescente di chiusi di K. **Primo passo**: $m_n(f(C \setminus C_1)) = 0$.

Sia $x_0 \in C \setminus C_1$. Il differenziale $df_{x_0} : \mathbb{R}^m \to \mathbb{R}^n$ non è nullo, ma non è suriettivo. Possiamo supporre (riordinando le coordinate) che

$$\frac{\partial f_1}{\partial x_1}(x_0) \neq 0.$$

Poniamo $g(x)=(f_1(x),x_2,\ldots,x_m)$. Allora $g:W\to\mathbb{R}^m$ è liscia e la sua jacobiana è

$$Jg(x_0) = \begin{pmatrix} \frac{\partial f_1}{\partial x_1}(x_0) & * \\ 0 & I_{m-1} \end{pmatrix}.$$

Per il Teorema della Funzione Inversa esiste un intorno aperto A di x_0 tale che g(A) sia aperto e tale che $g|_A$ sia un diffeomorfismo di A su g(A). Restringendo A possiamo supporre che $g(A)=(a,b)\times U$. Poniamo $h=f\circ g^{-1}:(a,b)\times U\to \mathbb{R}^n$. Se $x\in A$ si ha $df_x=dh_{g(x)}\circ dg_x$. Siccome dg_x è un isomorfismo, x è critico per f se e soltanto se g(x) è critico per f. Dunque $g(\operatorname{Crit}(f)\cap A)=\operatorname{Crit}(h)$. Ricordando che f=hg e che $C\subset\operatorname{Crit}(f)$ otteniamo $f(C\cap A)\subset h(\operatorname{Crit}(h))$. D'altro canto se $(t,y)\in (a,b)\times U$ e $x=g^{-1}(t,y)$ si ha $f_1(x)=t$, dunque

$$h(t,y) = f(x) = (t, \varphi(t,y))$$

dove $\varphi = (f_2, \dots, f_n) \circ g$. Poniamo

$$\varphi_t = \varphi(t, \cdot) \qquad \varphi_t : U \to \mathbb{R}^{n-1}.$$

Allora

$$Jh(t,y) = \begin{pmatrix} 1 & 0 \\ * & J\varphi_t(y) \end{pmatrix}.$$

Dunque $(t, y) \in \text{Crit}(h)$ se e solo se $y \in \text{Crit}(\varphi_t)$. Per l'ipotesi induttiva $m_{n-1}(\text{Crit}(\varphi_t)) = 0$, perché il dominio di φ_t ha dimensione m-1. Infine

$$h(\operatorname{Crit}(h)) = \{(t, z) \in \mathbb{R}^n : t \in (a, b), z \in \varphi_t(\operatorname{Crit}(\varphi_t))\}.$$

Dunque applicando il Teorema di Fubini otteniamo

$$m_n(h(\operatorname{Crit}(h))) = \int_a^b m_{n-1}(\varphi_t(\operatorname{Crit}(\varphi_t))dt = 0.$$

e infine $m_n(f(C \cap A)) = 0$. Possiamo ricoprire $C \setminus C_1$ con una infinità numerabile di aperti come A. Quindi $m_n(f(C \setminus C_1)) = 0$.

Secondo passo: per ogni $k \ge 1$ si ha $m_n(f(C_k \setminus C_{k+1})) = 0$.

Per ogni m-indice α ed ogni $j \in \{1, ..., m\}$ poniamo

$$g_{\alpha,j} = D^{\alpha} f_j$$
.

Allora $C_k = \{x \in K : g_{\alpha,j}(x) = \text{per ogni } j \text{ e ogni } \alpha \text{ tale che } |\alpha| \leq k \}$. Poniamo

$$M_{\alpha,j} := \{ x \in W : g_{\alpha,j}(x) = 0, dg_{\alpha,j}(x) \neq 0 \}.$$

 $M_{\alpha,j}$ è una sottovarietà di W di dimensione m-1. Per convincersene basta applicare il teorema del valore regolare alla restrizione di $g_{\alpha,j}$ all'aperto $\{x \in W : dg_{\alpha,j}(x) \neq 0\}$. Vogliamo dimostrare che

$$C_k \setminus C_{k+1} \subset \bigcup_{j=1}^n \bigcup_{|\alpha|=k} M_{\alpha,j}.$$
 (2)

Sia $x \in C_K \setminus C_{k+1}$. Poiché $x \notin C_{k+1}$, esistono j e β con $|\beta| = k+1$ tali che $g_{\beta,j}(x) \neq 0$. Sia $i \in \{1,\ldots,m\}$ un indice tale che $\beta_i > 0$. E sia $\alpha = (\beta_1,\ldots,\beta_{i-1},\beta_i-1,\beta_{i+1},\ldots,\beta_m)$. Dunque $|\alpha| = k$ e

$$g_{\beta,j}(x) = \frac{\partial}{\partial x^i} D^{\alpha} f_j(x) = \frac{\partial g_{\alpha,j}}{\partial x^i}(x).$$

Quindi $dg_{\alpha,j}(x) \neq 0$. D'altro canto $g_{\alpha,j}(x) = D^{\alpha}f_{j}(x) = 0$, perché $x \in C_{k}$. Quindi $x \in M_{\alpha,j}$. È così dimostrata la (2). Siccome $C_{k} \subset \operatorname{Crit}(f)$ e $\operatorname{Crit}(f) \cap M_{\alpha,j} \subset \operatorname{Crit}(f|_{M_{\alpha,j}})$, otteniamo

$$C_k \setminus C_{k+1} \subset \bigcup_{j=1}^n \bigcup_{|\alpha|=k} \operatorname{Crit}(f|M_{\alpha,j}).$$

Di nuovo possiamo applicare l'ipotesi induttiva: siccome dim $M_{\alpha,j}=m-1$, si ha

$$m_n(f(\operatorname{Crit}(f|M_{\alpha,j}))) = 0,$$

e dunque $m_n(f(C_k \setminus C_{k+1})) = 0$.

Terzo passo: se k > m/n allora $m_n(f(C_{k-1})) = 0$. Poniamo

$$C_1 := \sum_{|\alpha|=k} \frac{\max_K |D^{\alpha} f|}{\alpha!}.$$

Fissato un numero naturale s>0 suddividiamo il cubo unitario K in cubi chiusi di lato 2^{-s} suddividendo ciascun lato in s segmenti di lunghezza 2^{-s} . In questo modo troviamo 2^{sm} cubetti $\{K_j\}_{j=1}^{2^{sm}}$ la cui unione è K. Ciascun cubetto ha diametro $\sqrt{m}2^{-s}$. Poniamo

$$J = \{j : K_j \cap C_{k-1} \neq \emptyset\},\$$

e per ogni $j \in J$ scegliamo un punto $x_j \in C_k \cap K_j$. Ricordiamo la formula di Taylor con resto di Lagrange. Sia $A \subset \mathbb{R}^m$ un aperto e sia $f: A \to \mathbb{R}^n$ una funzione liscia. Siano $x_0, x \in A$. Se il segmento che congiunge x_0 ed x è contenuto in A, allora

$$f(x) = \sum_{|\alpha| \le k-1} \frac{D^{\alpha} f(x_0)}{\alpha!} (x - x_0)^{\alpha} + R(x; x_0), \tag{3}$$

$$R(x;x_0) = \sum_{|\alpha|=k} \frac{D^{\alpha} f(\xi)}{\alpha!} (x - x_0)^{\alpha}, \tag{4}$$

dove ξ è un punto che appartiene al segmento congiungente x_0 e x. Fissato $j \in J$ applichiamo la formula con $x_0 = x_j$ e $x \in K_j$. Otteniamo

$$f(x) = f(x_j) + R(x; x_j) = f(x_j) + \sum_{|\alpha| = k} \frac{D^{\alpha}(\xi)}{\alpha!} (x - x_j)^{\alpha}$$
$$|(x - x_j)^{\alpha}| \le |x - x_j|^{|\alpha|} = |x - x_j|^k \le (\sqrt{m}2^{-s})^k$$
$$|f(x) - f(x_j)| \le C_1 |x - x_j|^k \le C_2 2^{-sk}$$
$$\text{dove } C_2 := m^{k/2} C_1.$$

Dunque $f(K_j)$ è contenuto nella palla $B(f(x_j), C_2 2^{-sk})$ e pertanto $m_n(f(K_j)) \le C_3 2^{-snk}$, dove $C_3 = \omega_n C_2^n$ e ω_n indica il volume della palla unitaria in \mathbb{R}^n .

Siccome $C_{k-1} = \bigcup_{j \in J} (C_{k-1} \cap K_j)$, si ha

$$m_n(f(C_k)) \le \sum_{j \in J} m_n(f(C_k \cap K_j)) \le$$

$$\le \sum_{j \in J} m_n(f(K_j)) \le C_3 2^{-snk} \cdot |J| \le C_3 2^{-snk} 2^{sm} = C_3 2^{s(m-nk)}.$$

Poichè k > m/n, $\lim_{s \to \infty} 2^{s(m-nk)} = 0$. Dunque $m_n(f(C_k)) = 0$.

A questo punto scegliamo k > m/n - 1.

$$C = (C \setminus C_1) \cup \bigcup_{i=2}^k (C_{i-1} \setminus C_i) \cup C_k$$
$$f(C) = f(C \setminus C_1) \cup \bigcup_{i=2}^k f(C_{i-1} \setminus C_i) \cup f(C_k).$$

Dai tre punti precedenti segue che $m_n(f(C)) = 0$. È quindi sistemato il caso di una applicazione $f: W \to \mathbb{R}^n$ come sopra.

Passiamo al caso generale di una applicazione $f:M^m\to N^n$ fra varietà qualsiasi. Sia $p\in \operatorname{Crit}(f)$. Scelgo una carta (V,ψ) su N vicino a f(p). Sia (U,φ) una carta vicino a p. Restringendo posso supporre $f(U)\subset V$. Componendo φ con una traslazione ed una dilatazione posso supporre che $\varphi(p)=(1/2,\ldots,1/2)$ e che $\varphi(U)=:W\supset [0,1]^m$. Sia $\bar f:=\psi f\varphi^{-1}:W\to \mathbb R^n$. Allora $\operatorname{Crit}(\bar f)\cap [0,1]^m$ ha misura nulla. Dunque lo stesso vale per la sua controimmagine mediante φ , che coindice con $\operatorname{Crit}(f)\cap \varphi^{-1}([0,1]^m)$. Siccome $\varphi^{-1}([0,1]^m)$ è un intorno di $p\in p$ è arbitrario, applicando il Lemma 5 concludiamo che $\operatorname{Crit}(f)$ ha misura nulla.