Esame di Geometria III - 28 aprile 2015 6 cfu

N.B. Motivare adeguatamente tutte le risposte.

Esercizio 1. Sia M una varietà compatta e connessa e sia $f: M \to S^1$ una sommersione. Sia $Z \in \mathfrak{X}(S^1)$ il campo vettoriale definito dalla formula Z(z) := iz per ogni $z \in S^1$.

- 1. Si dimostri che f è suriettiva. **Svolgimento:** Le sommersioni sono applicazioni aperte, dunque f è aperta. Inoltre M è compatta e S^1 è di Hausdorff, dunque f è anche chiusa. Pertanto f(M) è sia aperto che chiuso in S^1 . Siccome S^1 è connessa, $f(M) = S^1$.
- 2. Si dimostri che per ogni x in M esistono un intorno aperto U di x ed un campo vettoriale $X_U \in \mathfrak{X}(U)$, tali che per ogni $y \in U$ si abbia

$$df_y(X_U(y)) = Z(f(y)).$$

Svolgimento: Sia $x \in M$. Per il teorema della funzione implicita esistono carte $(U, \varphi = (u_1, \dots, u_n))$ su M vicino ad x e $(V, \psi = (v_1))$ su S^1 vicino a f(x) tali che la rappresentazione locale $\bar{f} := \psi f \varphi^{-1}$ sia data da $f(u_1, \dots, u_n) = u_1$. Dunque

$$df\left(\frac{\partial}{\partial u^1}\right) = \frac{\partial}{\partial v^1}, \qquad df\left(\frac{\partial}{\partial u^j}\right) = 0 \ per \ j \ge 2.$$

Nella carta (V, v_1) si avrà $Z = g(v_1) \frac{\partial}{\partial v_1}$ per una certa funzione $g \in C^{\infty}(V)$. Allora basta porre $X(x) := g(f(x)) \frac{\partial}{\partial u_1}$.

3. Si deduca che esiste un campo globale $X \in \mathfrak{X}(M)$ tale che per ogni $x \in M$

$$df_x(X(x)) = Z(f(x)).$$

(Suggerimento: sfruttare la partizione dell'unità.) **Svolgimento:** Per il punto precedente esiste un ricoprimento aperto $\{U_i\}$ di M ed esistono dei campi $X_i \in \mathfrak{X}(U_i)$ tali che $df(X_i) = Z$. Sia χ_i una partizione dell'unità subordinata al ricoprimento $\{U_i\}$. Dunque $\{\operatorname{supp}(\chi_i)\}$ è una famiglia localmente finita e $\operatorname{supp}(\chi_i) \subset U_i$ (in realtà siccome M è compatta, possiamo supporre che il ricoprimento sia finito). Dunque $\chi_i X_i$ è un campo liscio definito su tutta M e lo stesso vale per $X := \sum_i \chi X_i$. Siccome df è lineare, $df_x(X(x)) = (\sum_i \chi_i(x)) \cdot Z_i(f(x)) = Z_i(f(x))$.

4. Sia $\{\psi_t\}_{t\in\mathbb{R}}$ il flusso di Z e sia $\{\varphi_t\}_{t\in\mathbb{R}}$ il flusso di X. Dimostrare che $f\varphi_t = \psi_t f$ per ogni t. **Svolgimento:** Fissiamo $x \in X$. Facciamo vedere che la curva $t \mapsto \alpha(t) := f(\varphi_t(x))$ è una curva integrale del campo Z. Infatti

$$\frac{\mathrm{d}}{\mathrm{dt}}\Big|_{t=0} \alpha(t) = df_{\alpha(t)} \left(\frac{\mathrm{d}}{\mathrm{dt}} \Big|_{t=0} \varphi_t(x) \right) = df_{\alpha(t)} (X(\varphi_t(x))) =$$

$$= Z(f(\varphi_t(x))) = Z(\alpha(t)).$$

Dunque α è una curva integrale di Z. Siccome $\alpha(0) = f(x)$, per l'unicità della soluzione delle equazioni ordinarie otteniamo $f(\varphi_t(x)) = \alpha(t) = \psi_t(f(x))$.

- 5. Calcolare esplicitamente ψ_t . **Svolgimento:** Siamo nel piano complesso $(= \mathbb{R}^2)$ e dobbiamo risolvere l'equazione $\dot{z}(t) = iz(t)$. La soluzione con punto di partenza $z_0 \in S^1$ è $z(t) = e^{it}z_0$. Quindi la soluzione è una rotazione del cerchio.
- 6. Dimostrare che tutte le fibre di f sono diffeomorfe. **Svolgimento:** Se $z \in S^1$, scrivo $z = e^{it}$. Allora $\psi_t(1) = z$. Vogliamo dimostrare che il diffeomorfismo φ_t di X porta la fibra $f^{-1}(1)$ nella fibra $f^{-1}(z)$. Infatti, supponiamo che $x \in f^{-1}(1)$. Sfruttando il punto 4 otteniamo che $z = \psi_t(1) = \psi_t(f(x)) = f(\varphi_t(x))$, dunque $\varphi_t(x) \in f^{-1}(z)$. È così dimostrato che $\varphi_t(f^{-1}(1)) \subset f^{-1}(z)$. L'inclusione opposta si dimostra nello stesso modo. Quindi il diffeomorfismo φ_t di X porta la sottovarietà $f^{-1}(1)$ sulla sottovarietà $f^{-1}(1)$. Quindi tutte le fibre sono diffeomorfe alla fibra su 1.

Esercizio 2. Consideriamo i seguenti sottoinsiemi di \mathbb{R}^3 :

$$C_e = \{(x, y, z) \in \mathbb{R}^3 : z = 0, x^2 + y^2 = 4\},$$

$$C_i = \{(x, y, z) \in \mathbb{R}^3 : z = 0, x^2 + y^2 = 1\},$$

$$C_i = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1\},$$

$$L_1 = \{0\} \times [1, 2] \times \{0\},$$

$$L_2 = \{0\} \times [-2, -1] \times \{0\},$$

 $Sia\ p := (0,1,0).\ Poniamo$

$$X_1 := C_e \cup S^2 \cup L_1 \cup L_2, \qquad X_2 := C_e \cup C_i \cup L_1 \cup L_2.$$

- 1. Calcolare $\pi_1(X_1, p)$ indicando un sistema di generatori.
- 2. Calcolare $\pi_1(X_2, p)$ indicando un sistema di generatori.
- 3. X_1 e X_2 hanno lo stesso tipo di omotopia?