Corso di Geometria 2 - a.a. 2014-2015

Prova scritta del 21 gennaio 2015

Esercizio 1 Sia $\phi: \mathbb{R}^2 \to \mathbb{R}^3, \ \phi(u,v)=(u^4+v^4,u,v+u^2).$ Sia Sl'immagine di ϕ

- 1. Mostrare che S è una superficie regolare in \mathbb{R}^3 e ϕ è una sua parametrizzazione.
- 2. Determinare la prima e la seconda forma fondamentale di S nei punti $\phi(u,v)$.
- 3. Determinare la matrice che rappresenta il differenziale della mappa di Gauss rispetto alla base ϕ_u , ϕ_v del piano tangente a S in $\phi(u, v)$ nei punti in cui u = 0.
- 4. Dire se la curve coordinate nei punti in cui u = 0 sono linee di curvatura.

Esercizio 2 Siano $f, g: \mathbb{R}^4 \to \mathbb{R}, f(x, y, z, w) = 2x^2 + 3y^2, g(x, y, z, w) = \frac{1}{2}x^2 + y^2 + z^2 + w^2 - \frac{1}{4}$. Sia $X = g^{-1}(0)$.

- 1. Mostrare che X è una sottovarietà di \mathbb{R}^4 di dimensione 3.
- 2. Determinare lo spazio tangente T_pX , $p=(\frac{1}{2},0,0,\frac{1}{2\sqrt{2}})$.
- 3. Sia $h = f_{|X} : X \to \mathbb{R}$. Per ogni $q \in X$, sia $M_q = \begin{pmatrix} (Jf)_q \\ (Jg)_q \end{pmatrix} : \mathbb{R}^4 \to \mathbb{R}^2$, dove $(Jf)_q$ e $(Jg)_q$ sono le matrici Jacobiane di f e g in q. Dato $v \in \mathbb{R}^4$, mostrare che $v \in KerM_q$ se e solo se $v \in T_qX$ e $v \in Ker(Dh)_q$.
- 4. Determinare i punti critici di h.

Esercizio 3 Si considerino in \mathbb{R}^3 la sfera unitaria S^2 con centro in O=(0,0,0), la retta r di equazioni x=y=0 ed i punti N=(0,0,1) e S=(0,0,-1). Sia

$$X = \mathbb{R}^3 \setminus \{r\}.$$

- (a) Verificare che $S^2 \setminus \{N, S\}$ è un retratto di deformazione di X;
- (b) determinare il gruppo fondamentale di X;
- (c) stabilire se X è semplicemente connesso.