Corso di Algebra 2 - a.a. 2014-2015

Prova scritta del 8.7.2015

Esercizio 0.1. *Sia* $P(X) = X^7 - 3X^5 - X^4 - 3X^3 + 3X^2 + 3 \in \mathbb{Q}[X]$.

- 1. Determinare una fattorizzazione di P(X) in fattori irriducibili su $\mathbb{Q}[X]$.
- 2. Determinare un campo di spezzamento K di P(X) su \mathbb{Q} .
- 3. Determinare il gruppo di Galois di P(X).
- 4. Dire se P(X) è risolubile per radicali.

Soluzione. Osserviamo che

$$P(X) = (X^3 - 1)(X^4 - 3X^2 - 3) = (X - 1)(X^2 + X + 1)(X^4 - 3X^2 - 3).$$

Il polinomio di quarto grado $Q(X) = X^4 - 3X^2 - 3$ è irriducibile per il criterio di Eisenstein, mentre $X^2 + X + 1 = \Phi_3(X)$ è il terzo polinomio ciclotomico. Abbiamo dunque trovato una fattorizzazione di P(X) in fattori irriducibili.

Ora, troviamo le radici del polinomio biquadratico Q(X). Effettuiamo il cambio variabile $Y = X^2$ e risolviamo l'equazione quadratica

$$Y^2 - 3Y - 3 = 0,$$

trovando le soluzioni

$$Y_{1,2} = \frac{3 \pm \sqrt{2}1}{2}.$$

Siano allora α , $\beta \in \mathbb{C}$ tali che

$$\alpha^2 = \frac{3 + \sqrt{21}}{2},$$

$$\beta^2 = \frac{3 - \sqrt{21}}{2}$$

Troviamo che $(\alpha\beta)^2=-3$. Notiamo che $\frac{3+\sqrt{2}1}{2}>0$. Possiamo scegliere $\alpha\in\mathbb{R}$ tale che

$$\alpha\beta = i\sqrt{3}$$
.

Quindi, le radici di Q(X) sono date da $\{\pm\alpha,\pm\frac{i\sqrt{3}}{\alpha}\}$, e un suo campo di spezzamento è dato da $K=\mathbb{Q}(\alpha,i\sqrt{3})$. D'altra parte, un campo di spezzamento di $\Phi_3(X)$ è dato da $\mathbb{Q}(i\sqrt{3})$, dunque K è un campo di spezzamento dell'intero polinomio P(X). Calcoliamo il grado dell'estensione:

$$[K : \mathbb{Q}] = [K : \mathbb{Q}(\alpha)][\mathbb{Q}(\alpha) : \mathbb{Q}] = 2 \cdot 4 = 8,$$

osservando che $[\mathbb{Q}(\alpha, i\sqrt{3}) : \mathbb{Q}(\alpha)] = 2$ poiché $\mathbb{Q}(\alpha)$ è un sottocampo di \mathbb{R} e $i\sqrt{3} \notin \mathbb{R}$. Ora, poniamo $G = \operatorname{Gal}(K/\mathbb{Q})$, che è un gruppo di ordine 8. Cerchiamo elementi di G definendoli sui generatori α e $i\sqrt{3}$. Iniziamo ponendo:

$$\rho: \begin{cases} \alpha & \mapsto \frac{i\sqrt{3}}{\alpha}, \\ i\sqrt{3} & \mapsto -i\sqrt{3}, \end{cases}$$

troviamo un ben definito elemento di G, tale che $\rho^4 = 1$. Poniamo poi

$$\sigma: \begin{cases} \alpha & \mapsto \alpha, \\ i\sqrt{3} & \mapsto -i\sqrt{3} \end{cases}.$$

Abbiamo che $\sigma^2 = 1$. Inoltre, con un calcolo diretto otteniamo la relazione

$$\sigma \rho = \rho^3 \sigma$$
.

Questo ci assicura che il gruppo G è isomorfo al gruppo diedrale D_4 . Da ciò possiamo anche concludere che P(X) è sicuramente risolubile per radicali, poiché il suo gruppo di Galois è risolubile.

Esercizio 0.2. *Sia* $P(X) = X^3 - X + 2 \in \mathbb{F}_7[X]$.

- 1. Determinare il gruppo di Galois di P su \mathbb{F}_7 .
- 2. Sia $L = \mathbb{F}_7(\alpha)$, dove α è un elemento trascendente su \mathbb{F}_7 . Mostrare che P è irriducibile su L.
- 3. Determinare il gruppo di Galois di P su L.

Risoluzione. 1) P è irriducibile in $\mathbb{F}_7[X]$ perché si verifica che non ha radici in \mathbb{F}_7 , quindi sappiamo che il suo gruppo di Galois è isomorfo ad un sottogruppo transitivo di S_3 . Poiché deve anche essere ciclico, è isomorfo ad $A_3 \cong \mathbb{Z}/3\mathbb{Z}$.

2) Dato che P ha grado 3 per mostrare che P è irriducibile su L, basta dimostrare che non ha radici in L. Sia $\beta \in L$ una radice di P. Allora esistono due polinomi $g,h \in \mathbb{F}_7[X], h \neq 0$ tali che $\beta = \frac{g(\alpha)}{h(\alpha)}$ e tali che $P(\frac{g(\alpha)}{h(\alpha)}) = 0$. Esplicitando si ottiene

$$\left(\frac{g(\alpha)}{h(\alpha)}\right)^3 - \frac{g(\alpha)}{h(\alpha)} + 2 = 0.$$

Moltiplicando per $h(\alpha)^3$ si ottiene

$$(g(\alpha))^3 - g(\alpha)(h(\alpha))^2 + 2(h(\alpha))^3 = 0.$$

Se poniamo $f(X)=(g(X))^3-g(X)(h(X))^2+2(h(X))^3\in \mathbb{F}_7[X]$, abbiamo $f(\alpha)=0$ e poiché α è trascendente su \mathbb{F}_7 si deve avere f=0 in $F_7[X]$. In particolare il termine

di grado massimo in X di f deve essere nullo. Sia n il grado di g e m il grado di h, supponiamo che $g(X) = \sum_{i=0,\dots,n} a_i X^i$, $h(X) = \sum_{j=0,\dots,m} b_j X^j$. Se n > m il termine di grado massimo di f è $a_n^3 X^{3n}$, quindi dobbiamo avere $a_n = 0$ che è impossibile perché g ha grado n. Se m > n il termine di grado massimo di f è $2b_m^3 X^{3m}$, quindi dovremmo avere $b_m = 0$ che è impossibile perché h ha grado m. Resta il caso n = m. In questo caso il termine di grado massimo di f è

$$x^{3n}(a_n^3 - a_nb_n^2 + 2b_n^3).$$

Pertanto dobbiamo avere $a_n^3 - a_n b_n^2 + 2b_n^3 = 0$. Dividendo per b_n^3 e ponendo $\gamma := \frac{a_n}{b_n} \in \mathbb{F}_7$ otteniamo

$$\gamma^3 - \gamma + 2 = 0,$$

ossia γ è una radice di P in \mathbb{F}_7 , ma questo è assurdo perché P non ha radici in \mathbb{F}_7 . Abbiamo quindi dimostrato che P non ha radici in L e quindi è irriducibile in L[X].

3) Sappiamo che P è irriducibile su L quindi il suo gruppo di Galois è isomorfo ad un sottogruppo transitivo di S_3 , pertanto o è isomorfo a S_3 o a $A_3 \cong \mathbb{Z}/3\mathbb{Z}$. Poiché il discriminante di P è $\Delta = -104 = -7 \cdot 15 + 1 = 1$ perché la caratteristica di L è 7, abbiamo che Δ ha una radice quadrata in L, quindi il gruppo di Galois di P su L è $A_3 \cong \mathbb{Z}/3\mathbb{Z}$.

Esercizio 0.3. Sia G un gruppo di cardinalità 25 · 7 · 11.

- 1. Dimostrare che G ha un sottogruppo normale N ciclico di ordine 77.
- 2. Dimostrare che G è un prodotto semidiretto di N con un gruppo di ordine 25.
- 3. Dare un esempio di un gruppo di cardinalità $25 \cdot 7 \cdot 11$ che non sia abeliano.

Risoluzione. 1) Il numero degli 11-Sylow è congruo a 1 modulo 11 e divide |G|, quindi deve dividere $25 \cdot 7$ e pertanto può solo essere uguale a 1. Dunque esiste un unico 11 - Sylow H che è normale in G.

Il numero dei 7-Sylow è congruo a 1 modulo 7 e divide |G|, quindi deve dividere $25 \cdot 11$ e pertanto può solo essere uguale a 1. Dunque esiste un unico 7 - Sylow M che è normale in G.

Allora si ha HM = MH è un sottogruppo di G e M, H sono normali in G. Inoltre $|H \cap M|$ deve dividere sia |H| = 11, sia |M| = 7, dunque $H \cap M = (e)$ e quindi il sottogruppo N := HM = MH è isomorfo al prodotto diretto $H \times M \cong \mathbb{Z}/11\mathbb{Z} \times \mathbb{Z}/7\mathbb{Z} \cong \mathbb{Z}/(77)\mathbb{Z}$. Quindi N è un sottogruppo di G ciclico di ordine 77. Dimostramo che N è normale in G. Sia $g \in G$, $x = hm \in HM$, con $h \in H$, $m \in M$. Abbiamo $gxg^{-1} = (ghg^{-1})(gmg^{-1}) \in HM$ perché $ghg^{-1} \in H$ per la normalità di H, $gmg^{-1} \in M$ per la normalità di M. Quindi N è normale in G e abbiamo visto che è ciclico di ordine 77.

- 2) Sia K un 5-Sylow di G. La cardinalità di K è 25 e poiché N è normale in G, NK = KN è un sottogruppo di G. Inoltre $|N \cap K|$ deve dividere sia |N| = 77 che |K| = 25, pertanto $|N \cap K| = 1$ e si ha $|NK| = |N| \cdot |K| = 77 \cdot 25 = |G|$. Quindi G è un prodotto semidiretto di N con K.
- 3) Consideriamo la seguente azione di $K := \mathbb{Z}/(25)\mathbb{Z} = \langle x \rangle$, con x di ordine 25, sul gruppo $N := \mathbb{Z}/7\mathbb{Z} \times \mathbb{Z}/11\mathbb{Z} \cong \langle y, z \mid y^7 = 1, z^{11} = 1, yz = zy \rangle$:

$$\phi: K \to Aut(\mathbb{Z}/7\mathbb{Z} \times \mathbb{Z}/11\mathbb{Z}),$$

$$\phi(x)(y) = y, \ \phi(x)(z) = z^4.$$

Si vede subito che l'ordine di $\phi(x)$ è 5, quindi l'omomorfismo ϕ è ben definito e non banale, pertanto il prodotto semidiretto $N \rtimes_{\phi} K$ è un gruppo di ordine $25 \cdot 7 \cdot 11$ non abeliano.