Corso di Algebra Lineare - a.a. 2017-2018

Prova scritta del 16.7.2018 COMPITO A

Esercizio 1 Sia Oxyz un sistema di riferimento ortonormale in uno spazio euclideo di dimensione 3. Siano in esso $P \in Q$ i punti di coordinate rispettivamente (1, -2, 3) e (3, -4, 2), e A il punto di coordinate (2,1,5); inoltre, siano $v \in w$ i vettori $(1,5,8) \in (3,1,-4)$ e sia S la sfera di equazione $x^2 + y^2 + z^2 - 4x + 2y - 2z - 5 = 0$.

- a) Trovare centro e raggio di S e scrivere equazioni cartesiane per la retta r passante per $P \in Q$ e per il piano π passante per A la cui giacitura è generata da $v \in w$;
- b) determinare le posizioni relative di $r \in \pi$, di $\pi \in S$ e determinare la distanza della retta r dal centro della sfera S:
- c) sia S' una sfera di raggio R, π' un piano a distanza d < R dal centro di S' e s una retta esterna alla sfera. Determinare (dimostrandolo) se esistono sempre rette contemporaneamente tangenti S', parallele a π' e secanti r, e se esistono, se esse sono un numero finito o infinito.

Punti: (3+4+3)

Esercizio 2

Si consideri l'applicazione lineare dipendente da un parametro reale
$$t, F_t : \mathbb{R}^3 \to \mathbb{R}^3$$
 tale che $F_t \begin{pmatrix} 1 \\ 5 \\ 4 \end{pmatrix} = \begin{pmatrix} 5t - 7 \\ 5t - 35 \\ -20 \end{pmatrix}, F_t \begin{pmatrix} 0 \\ 3 \\ 3 \end{pmatrix} = \begin{pmatrix} 3t \\ 3t - 21 \\ -15 \end{pmatrix}, F_t \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} = \begin{pmatrix} t - 7 \\ t + 7 \\ 2t + 10 \end{pmatrix}.$

- (1) Determinare la matrice A_t associata a F_t nella base standard in partenza e in arrivo.
- (2) Dire per quali valori del parametro reale t, A_t è diagonalizzabile su \mathbb{R} .
- (3) Calcolare autovalori e autovettori di A_{-7} .
- (4) Determinare la segnatura di $B_t = \begin{pmatrix} 0 & 6t+1 & 0 & t \\ 6t+1 & 0 & 3t & t \\ 0 & 3t & 0 & 9t \\ t & t & 9t & 0 \end{pmatrix}$ al variare del parametro

reale t.

Punti: (4+4+3+4)

Esercizio 3

- (1) Dire se è vero o falso che ogni matrice $A \in M(2,\mathbb{R})$ tali che $A^2 = 3I$ è diagonalizzabile.
- (2) Dire se è vero o falso che esiste una matrice $A \in M(3,\mathbb{R})$ tale che $A^2 = 3I$, A non è un multiplo dell'identità e A è diagonalizzabile.
- (3) Dire se è vero o falso che esistono matrici $A \in M(4,\mathbb{R})$ tali che $A^* = 3A + I$ e, se esistono, dire se sono tutte diagonalizzabili.
- (4) Dire se è vero o falso che per ogni $A \in M(5, \mathbb{R})$ invertibile, tAA è congruente a 2I.

Punti: (1+1+1+2)

Corso di Algebra lineare - a.a. 2017-2018 Prova scritta del 16.7.2018 Risultati

Nome:		(Cognome:	Matricola:	
Anno di corso:			Mat.	Fis.	(crocettare)
Compito	\mathbf{A}	В	${f C}$	D	(crocettare)
ESERCIZIO	1				
a)					
b)					
c)					
ESERCIZIO	2				
(1)					
(2)					
(3)					
(4)					
ESERCIZIO	3 (croc	ettare V	=vero o F	`= falso)	
(1) V (2) V (3) V (4) V	F F F				