Scritto di Geometria 2 15/07/2019 - a.a. 2018-2019

Esercizio 1

Sia $\alpha: (-4, +\infty) \to \mathbb{R}^3$ una curva parametrizzata per lunghezza d'arco e biregolare con curvatura $k(s) = \frac{1}{s+4}$ e torsione $\tau(s)$. Sia $\beta: (-4, +\infty) \to \mathbb{R}^3$, $\beta(s) := \alpha(s) - (s+4)\mathbf{t}(s)$, dove $\mathbf{t}(\mathbf{s})$ è il versore tangente a $\alpha(s)$.

- 1. Dire se β è una curva biregolare.
- 2. Determinare la curvatura di β e il triedro di Frenet di β in funzione di quello di α e di k(s) e $\tau(s)$.
- 3. Dire se è possibile che per un'opportuna scelta di $\tau(s)$ la curva β sia piana.

Esercizio 2

Sia

$$\sigma: U := \{(u, v) \in \mathbb{R}^2 \mid v > 0\} \to \mathbb{R}^3,$$

$$\sigma(u, v) = (u + v^2, u + 2v^2, u^2 + 3v^2).$$

- 1. Dimostrare che $S:=Im(\sigma)$ è una superficie regolare.
- 2. Dimostrare che $\forall p \in S$ esiste una semiretta passante per p e contenuta in S.
- 3. Determinare la natura dei punti di S.
- 4. Dire se la curva $C := S \cap \{(x, y, z) \in \mathbb{R}^3 \mid y = 2x\}$ è una geodetica.
- 5. Dire se C è una linea asintotica.

Esercizio 3

Siano

$$X = \{(x, y, z) \in \mathbb{R}^3 \mid z = x^2 + y^2 + 1\}, Y = \{(x, y, z) \in \mathbb{R}^3 \mid z = -x^2 - y^2 - 1\},$$

$$S = \{x^2 + y^2 = 1, -2 \le z \le 2\}, C_1 = \{z = 2, x = 0, -1 \le y \le 1\},$$

$$C_2 = \{z = -2, x = 0, -1 \le y \le 1\}.$$

- 1. Determinare il gruppo fondamentale di $W := X \cup Y \cup S$.
- 2. Determinare il gruppo fondamentale di $W \cup C_1$.
- 3. Determinare il gruppo fondamentale di $W \cup C_1 \cup C_2$.