Corso di Algebra Lineare - a.a. 2017-2018

Prova scritta del 1.2.2018 COMPITO A

Esercizio 1

Sia Oxyz un sistema di riferimento ortonormale in uno spazio euclideo di dimensione 3. Siano in esso $P \in Q$ i punti di coordinate rispettivamente (-1,2,3) e (-3,4,2), e A il punto di coordinate (-2, -1, 5); inoltre, sia v il vettore ${}^{t}(1, 5, 8)$ e S la sfera di equazione $x^{2} + y^{2} + z^{2} -$ 4x + 2y - 2z - 3 = 0.

- a) Trovare centro e raggio di S, scrivere equazioni cartesiane per la retta r passante per Pe Q ed equazioni parametriche per il piano π passante per A la cui giacitura è ortogonale al vettore v:
- b) determinare le posizioni relative di $r \in \pi$, di $r \in S$ e determinare un punto (eventualmente unico) di minima distanza del piano π dalla sfera S;
- c) siano S_1 ed S_2 due sfere disgiunte dello stesso raggio (positivo) contenute nei due diversi semispazi individuati da un piano π_1 . Dire (dimostrandolo) se esistono sempre quadrati con un vertice su S_1 , un vertice su S_2 e due vertici su π , e se esistono sempre, se essi sono sempre in numero finito o infinito.

Punti: (3+4+3)

Esercizio 2

Si consideri l'applicazione lineare dipendente da un parametro reale $t,\,F_t:\mathbb{R}^3\to\mathbb{R}^3$ tale che

$$F_t\begin{pmatrix} 2\\2\\2 \end{pmatrix} = \begin{pmatrix} 4t-2\\4t+6\\-2t^2+12t-20 \end{pmatrix}, F_t\begin{pmatrix} 1\\3\\0 \end{pmatrix} = \begin{pmatrix} 2t\\6t\\-(t-2)^2 \end{pmatrix}, F_t\begin{pmatrix} 0\\3\\-3 \end{pmatrix} = \begin{pmatrix} 0\\6t-9\\-6t+15 \end{pmatrix}.$$

- (1) Determinare la matrice A_t associata a F_t nella base standard in partenza e in arrivo.
- (2) Dire per quali valori del parametro reale t, A_t è diagonalizzabile su \mathbb{R} .
- (3) Calcolare autovalori e autovettori di A_0 .
- (3) Calcolare autovalor of all (4) Determinare la segnatura di $B_t = \begin{pmatrix} 0 & t-1 & t+1 & t \\ t-1 & 0 & 2 & 3 \\ t+1 & 2 & 0 & 0 \\ t & 3 & 0 & 0 \end{pmatrix}$ al variare del parametro

reale t. Punti: (4+4+3+4)

Esercizio 3

- (1) Dire se è vero o falso che esiste una matrice $A \in M(3,\mathbb{C})$ tali che $A \neq 0$ e $A^t \cdot A = 0$.
- (2) Dire se è vero o falso che esiste una matrice $A \in M(3,\mathbb{R})$ tali che $A \neq 0$ e $A^t \cdot A = 0$.
- (3) Dire se è vero o falso che esistono matrici $A \in M(5,\mathbb{C})$ tali che $A^* = A^2 + A + I$. Se esistono, dire se sono tutte diagonalizzabili.
- (4) Dire se è vero o falso che esiste una matrice $A \in M(4,\mathbb{C})$ tale che $A^2 4A + 4I = 0$, che non sia multiplo dell'identità e che sia diagonalizzabile.

Punti: (1+1+2+1)

Corso di Algebra lineare - a.a. 2017-2018 Prova scritta del 1.2.2018 Risultati

Nome:		С	Matricola:		
Anno di corso:			Mat.	Fis.	(crocettare)
Compito	\mathbf{A}	В	\mathbf{C}	D	(crocettare)
ESERCIZIO) 1				
a)					
b)					
c)					
ESERCIZIO	0 2				
(1)					
(2)					
(3)					
(4)					
ESERCIZIO) 3 (croc	ettare ${f V}=$	=vero o F	= falso)	
(1) V (2) V (3) V (4) V	F F F				