Corso di Algebra 1 - a.a. 2009-2010

Prova scritta del 2.2.2010

- 1. Per quali $n \in \mathbb{N}$ vale $2^n \equiv 3^n \mod 7$?
- 2. Se G è un gruppo, [G,G] indica il sottogruppo (normale) dei commutatori di G, cioè il sottogruppo generato dal sottoinsieme di G

$${aba^{-1}b^{-1} : a, b \in G}.$$

Dimostrare che $[D_4, D_4]$ è isomorfo a $\mathbb{Z}/2\mathbb{Z}$ e $D_4/[D_4, D_4]$ è isomorfo a $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.

- 3. Sia $f: G \to G'$ un omomorfismo di gruppi.
 - (a) Dimostrare che se f è suriettivo, allora $f(Z(G)) \subseteq Z(G')$.
 - (b) Dimostrare che se f è un isomorfismo, allora f(Z(G)) = Z(G').
- 4. Sia A un anello commutativo e $a \in A$ un elemento non nullo e non invertibile.
 - (a) Dimostrare che se A è un dominio di integrità, allora $(a^2) \subsetneq (a)$.
 - (b) Fornire un esempio in cui $(a^2) = (a)$.
- 5. Dire se l'ideale $(3X^2+4X+1)$ in A[X] è primo e/o massimale nei seguenti casi:
 - (a) $A = \mathbb{Z}/3\mathbb{Z}$;
 - (b) $A = \mathbb{Q}$.

Soluzioni

- 1. Denotando con \bar{a} la classe di un intero a in $\mathbb{Z}/7\mathbb{Z}$, un naturale n verifica la congruenza data se e solo se $\bar{2}^n = \bar{3}^n$. Osservando che $\bar{2}, \bar{3} \in \mathbb{Z}/7\mathbb{Z}^*$ (perché $\operatorname{mcd}(2,7) = \operatorname{mcd}(3,7) = 1$), quest'ultima uguaglianza è equivalente a $(\bar{2}^{-1} \cdot \bar{3})^n = \bar{1}$, che è verificata se e solo se n è un multiplo dell'ordine (in $\mathbb{Z}/7\mathbb{Z}^*$) di $\bar{2}^{-1} \cdot \bar{3} = \bar{4} \cdot \bar{3} = \bar{5}$. È facile verificare che ord $(\bar{5}) = 6$: per il teorema di Lagrange $\operatorname{ord}(\bar{5}) | \#(\mathbb{Z}/7\mathbb{Z}^*) = 6$ e $\operatorname{ord}(\bar{5}) > 3$ perché $\bar{5}^1 = \bar{5} \neq \bar{1}$, $\bar{5}^2 = \bar{4} \neq \bar{1}$, $\bar{5}^3 = \bar{6} \neq \bar{1}$. Dunque gli $n \in \mathbb{N}$ cercati sono i multipli di 6.
- 2. Indichiamo con $R^i S^j$ $(i=0,\ldots,3,\ j=0,1)$ gli elementi di D_4 e poniamo $H=[D_4,D_4].$
 - (a) Ricordando che ord(R) = 4, ord(S) = 2 e che vale la relazione $SR = R^{-1}S$, determiniamo il commutatore $[a, b] = aba^{-1}b^{-1}$ di due elementi $a, b \in D_4$ nei vari casi. Se $a = R^i$ e $b = R^j$,

$$[a,b] = R^i R^j R^{-i} R^{-j} = 1.$$

Se $a = R^i$ e $b = R^j S$,

$$[a, b] = R^{i} R^{j} S R^{-i} S R^{-j} = R^{2i}.$$

Se $a = R^i S$ e $b = R^j$,

$$[a,b] = R^i S R^j S R^{-i} R^{-j} = R^{-2j}.$$

Se $a = R^i S$ e $b = R^j S$,

$$[a,b] = R^i S R^j S S R^{-i} S R^{-j} = R^{2i-2j}.$$

Ne segue che l'insieme dei commutatori in D_4 è $\{1, R^2\}$, che è un sottogruppo di D_4 , come è immediato verificare. Dunque $H = \{1, R^2\} \cong \mathbb{Z}/2\mathbb{Z}$.

(b) Per ogni $a \in D_4$ si ha $a^2 \in H$ (per la precisione, $a^2 = 1$ se a = 1, $a = R^2$ o $a = R^i S$, mentre $a^2 = R^2$ se a = R o $a = R^3$). Perciò nel gruppo quoziente $G = D_4/H$ si ha $g^2 = 1$ per ogni $g \in G$. Essendo G un gruppo di ordine $(\#D_4)/(\#H) = 8/2 = 4$, e sapendo che ogni gruppo di ordine 4 è isomorfo a $\mathbb{Z}/4\mathbb{Z}$ o a $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$, concludiamo che deve essere $G \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.

3. (a) Bisogna dimostrare che se $a \in Z(G)$, allora $f(a) \in Z(G')$, cioè che f(a)b' = b'f(a) per ogni $b' \in G'$. Essendo f suriettivo, esiste $b \in G$ tale che f(b) = b', per cui usando il fatto che ab = ba e che f è un omomorfismo concludiamo che

$$f(a)b' = f(a)f(b) = f(ab) = f(ba) = f(b)f(a) = b'f(a).$$

(b) Grazie alla prima parte resta da dimostrare che $Z(G') \subseteq f(Z(G))$. Dato $a' \in Z(G')$, poiché f è suriettivo esiste $a \in G$ tale che a' = f(a), e basta provare che $a \in Z(G)$, cioè che ab = ba per ogni $b \in G$. Usando il fatto che $a' \in Z(G')$ e che f è un omomorfismo, troviamo

$$f(ab) = f(a)f(b) = a'f(b) = f(b)a' = f(b)f(a) = f(ba),$$

il che implica ab = ba perché f è iniettivo.

- 4. (a) Poiché $a^2 \in (a)$, si ha $(a^2) \subseteq (a)$. Inoltre ovviamente $a \in (a)$, quindi per concludere che $(a^2) \neq (a)$ basta dimostrare che $a \notin (a^2)$. Supponendo per assurdo che $a \in (a^2)$, esisterebbe $b \in A$ tale che $a = a^2b$, cioè a(1 ab) = 0. Essendo A un dominio, da ciò seguirebbe che a = 0 o ab = 1 (per cui $a \in A^*$), contro l'ipotesi.
 - (b) Un esempio è dato da $A = \mathbb{Z}/6\mathbb{Z}$ e $a = \bar{3}$: infatti si ha

$$a^2 = \bar{3}^2 = \bar{9} = \bar{3} = a,$$

e dunque
$$(a^2) = (a)$$
.

- 5. In entrambi i casi, essendo A un campo e quindi A[X] un dominio a ideali principali, l'ideale generato da $f=3X^2+4X+1\neq 0$ è massimale se e solo se è primo se e solo se f è irriducibile.
 - (a) f = X + 1 è irriducibile, dunque (f) è primo e massimale.
 - (b) f = (X+1)(3X+1) non è irriducibile, dunque (f) non è né primo né massimale.