Corso di Algebra Lineare - a.a. 2016-2017

Prova scritta del 1.2.2017 COMPITO C

Esercizio 1 Sia Oxyz un sistema di riferimento ortonormale in uno spazio euclideo di dimensione 3. Siano in esso C, P e Q i punti di coordinate rispettivamente (3, -1, -2), (2, 3, 0)e (1,3,2); $v \in w$ i vettori rispettivamente $t(1,2,-2) \in t(1,0,-2)$; inoltre, sia π_1 il piano di equazione 2x - 2y - z = 1, s_1 la retta passante per P la cui giacitura è generata da v e s_2 la retta passante per Q la cui giacitura è generata da w. Sia S la sfera di centro C e raggio 4.

- (1) Determinare un'equazione cartesiana di S, un'equazione parametrica di π_1 ed equazioni cartesiane per la retta n passante per P e perpendicolare a π_1 ;
- (2) determinare le posizioni relative di π_1 e S, di s_1 e π_1 , di s_2 e S;
- (3) sia dato un piano π_2 , una retta s_3 parallela a π_2 e distante da esso 2 e una retta s_4 (incidente e) perpendicolare a s_3 , ma né parallela, né perpendicolare a π_2 . Esistono sfere di raggio 3 contemporaneamente tangenti a π_2 , s_3 e s_4 ? Se sì, ne esistono infinite?

Punti: (3+4+3)

Esercizio 2

Si consideri l'applicazione lineare dipendente da un parametro reale $t, F_t : \mathbb{R}^4 \to \mathbb{R}^4$ tale che

$$F_{t}\begin{pmatrix}1\\0\\0\\0\end{pmatrix} = \begin{pmatrix}-t-1\\-2t\\-3t\\3t\end{pmatrix}, F_{t}\begin{pmatrix}0\\1\\0\\0\end{pmatrix} = \begin{pmatrix}t+2\\2t+1\\t+\frac{1}{4}\\-3t-\frac{1}{4}\end{pmatrix}, F_{t}\begin{pmatrix}0\\0\\1\\0\end{pmatrix} = \begin{pmatrix}0\\0\\2t-1\\0\end{pmatrix}, F_{t}\begin{pmatrix}0\\0\\0\\1\end{pmatrix} = \begin{pmatrix}4\\4\\t+2\\2t-3\end{pmatrix}.$$

(1) Determinare la matrice A_t associata a F_t nella base ordinata

$$\mathcal{B} := \{ v_1 = \begin{pmatrix} -1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, v_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}, v_3 = \begin{pmatrix} 0 \\ 0 \\ -1 \\ 0 \end{pmatrix}, v_4 = \begin{pmatrix} 0 \\ 0 \\ 1 \\ -1 \end{pmatrix} \}$$

in partenza e in arrivo.

- (2) Dire per quali valori del parametro reale t, A_t è diagonalizzabile su \mathbb{R} .
- (3) Calcolare autovalori e autovettori di $M := \begin{pmatrix} 2 & 0 & 0 & 0 \\ 6 & 1 & 0 & -4 \\ 0 & 6 & 5 & 3 \\ 9 & \frac{1}{4} & 0 & 3 \end{pmatrix}$.

 (4) Determinare la segnatura di $B_t = \begin{pmatrix} (t-3)^2 & t(t-3) & t^3 + 1 \\ t(t-3) & t^2 & 0 \\ t^3 + 1 & 0 & 0 \end{pmatrix}$ al variare del parametro

Punti: (4+4+3+4)

Esercizio 3

- (1) Dire se è vero o falso che per ogni $A \in M(5,\mathbb{C})$ che non è un multiplo dell'identità e tale che $A^2 = -I$ si ha che gli autovalori di A sono $i \in -i$.
- (2) Dire se è vero o falso che esiste una matrice $A \in Mat(4,\mathbb{R})$ che ha un autovalore λ tale che gli autovalori di $A - \lambda I$ siano 1, -1, 2, -2.
- (3) Siano $A, B \in M(4, \mathbb{R})$ simmetriche, siano q_A e q_B le forme quadratiche associate e supponiamo che q_B sia definita positiva. Dire se è vero o falso che esiste una base di \mathbb{R}^4 che è ortogonale sia per q_A che per q_B .
- (4) Dire se è vero o falso che per ogni A e B come nel punto (3) vale AB = BA.

Punti: (1+1+2+1)

Corso di Algebra lineare - a.a. 2016-2017 Prova scritta del 01.02.2017 Risultati

Nome:		C	Matricola:		
Anno di corso:			Mat.	Fis.	(crocettare)
Compito	${f A}$	В	\mathbf{C}	D	(crocettare)
ESERCIZIO) 1				
(1)					
(2)					
(3)					
ESERCIZIO) 2				
(1)					
(2)					
(3)					
(4)					
ESERCIZIO) 3 (croc	cettare V=	=vero o F	= falso)	
(1) V (2) V (3) V (4) V	F F F				