Cognome e Nome \mathbf{B}

Firma

Appello del 27-06-2007

1. Sia I l'intervallo costituito da tutti e soli gli $x \in \mathbb{R}$ per cui converge la serie

di potenze reali $\sum_{n=1}^{+\infty} (-1)^n n^{-2} (27)^{-n} (x-6)^{3n}$. Allora $3 \sup I - \inf I$ vale

2. Sia z=g(x,y) l'equazione del piano tangente alla superficie S di equazione $z = (x^2 + 8)e^{1-y} + y^2 \frac{\sin(8x - 8)}{\sin(8x - 8)}$ nel punto $(x_0, y_0, z_0) = (1, 1, 9)$ di S.

Allora g(2,0) vale $\boxed{28}$

3. Sia $f(x,y) = y^3 \arctan(-7x) + 7e^{-x} \cos(y-1-\frac{\pi}{2}), \forall (x,y) \in \mathbf{R}^2$.

Allora $\frac{\partial^2 f}{\partial x \partial y}(0,1)$ vale $\boxed{-28}$

4. Sia $g(x)=5x^3\arctan(x^2)+xe^{-5x^6}$, $\forall x\in\mathbf{R}$. Sia $P_{12}(x)$ il polinomio di Mac Laurin

di ordine 12 della funzione g . Allora $P'_{12}(1)$ vale $-2\downarrow$

5. Quali sono tutti e soli gli $x \in \mathbb{R}$ per cui diverge

la serie $\sum_{n=0}^{+\infty} \frac{\sqrt{n^{4x+16}}}{n+16}$? $\times > - +$

6. Sia s la somma della serie convergente $\sum_{n=1}^{+\infty} \frac{1+3^n}{4^n}$.

Allora $s - \frac{1}{3}$ vale

• Per ognuna delle 12 domande : 2 punti, se la risposta è esatta ; 0 punti, se la risposta è sbagliata o non è data.

• La prova è superata e lo Studente è ammesso alla prova orale, se il punteggio totale così ottenuto è maggiore o uguale di 18 punti (cioè se le risposte esatte sono almeno 9).

• Tempo a disposizione: 2 ore.

В

Cognome e Nome

Firma

Appello del 27-06-2007

- 7. Sia $f(x,y) = 7 + x^7 + 2y^3 + 3y^2 7x$, $\forall (x,y) \in \mathbb{R}^2$. Sia (x_m, y_m) l'unico punto di **minimo** relativo della funzione f; sia (x_M, y_M) l'unico punto di **massimo** relativo della funzione f. Allora $f(x_m, y_m) + 2f(x_M, y_M)$ vale
- 9. Sia $D=\{(x,y)\in\mathbf{R^2}:4\geq x^2+y^2\geq 2\,;\,0\geq y\,\}$. Sia C la curva-bordo di D, percorsa tutta una volta in senso antiorario. Sia $\vec{\mathbf{F}}(x,y)=(x^3y^2-3x^2y)\,\vec{\mathbf{i}}+(3xy^2+\sin(3y))\,\vec{\mathbf{j}},\,\forall (x,y)\in\mathbf{R^2}$. Sia $J=\oint_C\vec{\mathbf{F}}\cdot d\vec{\mathbf{r}}$. Allora $\frac{J}{\pi}$ vale
- 10. Si consideri, nel piano xy, la curva C data da $\vec{\mathbf{r}}(t) = t^{-1}\vec{\mathbf{i}} + t^2\vec{\mathbf{j}}, t \in [1,2]$. Sia $\vec{\mathbf{F}}(x,y) = y\vec{\mathbf{i}} 4x\vec{\mathbf{j}}, \forall (x,y) \in \mathbf{R^2}$. Si consideri l'integrale di linea $I = \int_C \vec{\mathbf{F}} \cdot d\vec{\mathbf{r}}$. Allora I vale
- 11. Si consideri, per ogni $\alpha \in \mathbf{R}$, il campo vettoriale $\vec{\mathbf{F}}(x,y) = (\cos(5x^3) (1+\alpha)x^2y^3\sin(5x^3))\vec{\mathbf{i}} + (2y^2\cos(5x^3) + \alpha\sin(5y^3))\vec{\mathbf{j}}, \forall (x,y) \in \mathbf{R}^2$. Qual' è l'unico $\alpha \in \mathbf{R}$ per cui $\vec{\mathbf{F}}(x,y)$ è conservativo in tutto \mathbf{R}^2 ?
- 12. Sia S la superficie totale del solido $V=\{(x,y,z)\in\mathbf{R^3}:1\geq y^2+z^2\,;\,2\geq |x|\,\}$. Sia $\vec{\mathbf{n}}\,(x,y,z)$ il versore normale esterno a S nel generico punto $(x,y,z)\in S$. Sia $\vec{\mathbf{F}}\,(x,y,z)=(6xy^3+\cos(6z))\,\vec{\mathbf{i}}+(y\sin(6z)-6y)\,\vec{\mathbf{j}}+(xe^{-6y}-6z)\,\vec{\mathbf{k}}\,,\forall(x,y,z)\in\mathbf{R^3}$. Sia $J=\iint_S \vec{\mathbf{F}}\,(x,y,z)\cdot\vec{\mathbf{n}}\,(x,y,z)\,dS$. Allora $\frac{J}{2\pi}$ vale $\boxed{\qquad}$
 - Per ognuna delle 12 domande : 2 punti, se la risposta è esatta ; 0 punti, se la risposta è sbagliata o non è data.
 - La prova è superata e lo Studente è ammesso alla prova orale, se il punteggio totale così ottenuto è maggiore o uguale di 18 punti (cioè se le risposte esatte sono almeno 9).
 - Tempo a disposizione: 2 ore .

Cognome e Nome

 \mathbf{B}

Firma

Appello del 12-07-2007

- 1. Sia I l'intervallo costituito da tutti e soli gli $x \in \mathbb{R}$ per cui converge la serie di potenze reali $\sum_{n=1}^{+\infty} 4^{1-n} (n+2)^{-1} (x-6)^{4n+1}$. Allora $(\sup I) \cdot (\inf I)$ vale $3 \downarrow 1$
- 2. Sia $f(x,y) = y e^{-8(x-1)} + 8x^2y^3$, $\forall (x,y) \in \mathbf{R}^2$. Sia $\frac{\partial f}{\partial \vec{\mathbf{u}}}(1,1)$ la derivata direzionale di f nel punto $(x_0,y_0) = (1,1)$ secondo il versore $\vec{\mathbf{u}} = \frac{1}{\sqrt{5}}(\vec{\mathbf{i}} 2\vec{\mathbf{j}})$. Allora $\sqrt{5} \frac{\partial f}{\partial \vec{\mathbf{u}}}(1,1)$ vale $\boxed{ \downarrow 2}$
- 3. Sia $f(x,y)=7x^5y+x^3e^{\sin(7y)}$, $\forall (x,y)\in\mathbf{R^2}$. Allora $\frac{\partial^2 f}{\partial x \partial y}(-1,2\pi)$ vale $\boxed{56}$
- 4. Sia $g(x)=rac{1}{5}\cos(5x^5)+x^4e^{5x^7}$, $\forall x\in\mathbf{R}$. Sia $P_{12}(x)$ il polinomio di Mac Laurin di ordine 12 della funzione g. Allora $P'_{12}(1)$ vale
- 5. Sia s la somma della serie convergente $\sum_{n=0}^{+\infty} \frac{(-1)^{n+1} 4 \pi^{2n-1} (2n+2)}{(2n+2)! 6^{2n}}$ Allora $\pi^2 s$ vale $\boxed{-12}$
- 6. Sia s la somma della serie convergente $\sum_{n=1}^{+\infty} \frac{(-1)^{2n+1} \, 3^{n+1}}{(3+e)^n}$. Allora es vale $\boxed{ }$
 - Per ognuna delle 12 domande : 2 punti, se la risposta è esatta ; 0 punti, se la risposta è sbagliata o non è data.
 - La prova è superata e lo Studente è ammesso alla prova orale, se il punteggio totale così ottenuto è maggiore o uguale di 18 punti (cioè se le risposte esatte sono almeno 9).
 - Tempo a disposizione: 2 ore.

B Cognome e Nome

Firma

Appello del 12-07-2007

- 7. Sia $Q = \{(x,y) \in \mathbf{R}^2 : 3 \ge |x|; 3 |x| \ge y \ge |x| 3; (x,y) \notin T\}$, dove $T = \{(x,y) \in \mathbf{R}^2 : |x| < 1; |y| < 1\}$. Sia $f(x,y) = 7 + \sqrt{x^2 + y^2}$, $\forall (x,y) \in \mathbf{R}^2$. Sia M il valore massimo assoluto assunto dalla restrizione della funzione f a Q; sia m il valore minimo assoluto assunto dalla restrizione della funzione f a Q. Allora 2m + M vale 26
- 8. Sia $D = \{(x,y) \in \mathbf{R}^2 : 4 \ge x^2 + y^2 \ge 1; x \ge |y|\}$. Sia C la curva-bordo di D. Sia $\vec{\mathbf{n}}(x,y)$ il versore normale esterno a C nel generico punto $(x,y) \in C$. Sia $\vec{\mathbf{F}}(x,y) = (x^3 \sin(8y) + 8y^4)\vec{\mathbf{i}} + 8xy\vec{\mathbf{j}}, \forall (x,y) \in \mathbf{R}^2$. Sia $J = \oint_C \vec{\mathbf{F}}(x,y) \cdot \vec{\mathbf{n}}(x,y) \, ds$. Allora $\frac{3J}{\sqrt{2}}$ vale $\boxed{56}$
- 9. Si consideri, nel piano xy, il poligono T di vertici, nell'ordine, i punti (0,0), (1,-2), (1,1), (0,2), (-1,1), (-1,-2). Sia C la curva-bordo di T, percorsa tutta una sola volta in senso antiorario. Sia $\vec{\mathbf{F}}(x,y) = 3y|x|\vec{\mathbf{i}} + (x^4\cos(3y) + 3y^2)\vec{\mathbf{j}}$, $\forall (x,y) \in \mathbf{R}^2$. Sia $I = \oint_C \vec{\mathbf{F}} \cdot d\vec{\mathbf{r}}$. Allora 3I vale $2 \downarrow \downarrow$
- 10. Si consideri, nel piano xy, la curva C data da $\vec{\mathbf{r}}(t) = t\,\vec{\mathbf{i}} + t^4\,\vec{\mathbf{j}}, t \in [0,1]$. Sia $\vec{\mathbf{F}}(x,y) = 4y\,\vec{\mathbf{i}} + x\,\vec{\mathbf{j}}, \, \forall (x,y) \in \mathbf{R}^2$. Si consideri l'integrale curvilineo $I = \int_C \vec{\mathbf{F}} \cdot d\vec{\mathbf{r}}$. Allora 5I vale
- 11. Si consideri, per ogni $\alpha \in \mathbf{R}$, il campo vettoriale $\vec{\mathbf{F}}(x,y) = (\arctan(5x) + \alpha x^3 y^2 e^{-5x^4})\vec{\mathbf{i}} + (\alpha\cos(5y) + 2ye^{-5x^4})\vec{\mathbf{j}}$, $\forall (x,y) \in \mathbf{R}^2$. Qual' è l'unico $\alpha \in \mathbf{R}$ per cui il campo vettoriale $\vec{\mathbf{F}}(x,y)$ è conservativo in tutto \mathbf{R}^2 ?
- 12. Sia S la superficie totale del solido $V = \{(x, y, z) \in \mathbf{R}^3 : 1 \ge x^2 + y^2; 1 \ge z \ge -\sqrt{1 x^2 y^2}\}$.

Sia $\vec{\mathbf{n}}(x,y,z)$ il versore normale **esterno** a S nel generico punto $(x,y,z) \in S$. Sia $\vec{\mathbf{F}}(x,y,z) = (6x - y\cos(6z))\vec{\mathbf{i}} + (6x^2y^2 - 6y)\vec{\mathbf{j}} + (z\sin(6x) - 6z)\vec{\mathbf{k}}, \forall (x,y,z) \in \mathbf{R}^3$. Sia $J = \iint_S \vec{\mathbf{F}}(x,y,z) \cdot \vec{\mathbf{n}}(x,y,z) dS$. Allora $\frac{3J}{\pi}$ vale $\boxed{\qquad \qquad }$

- Per ognuna delle 12 domande : 2 punti, se la risposta è esatta ; 0 punti, se la risposta è sbagliata o non è data.
- La prova è superata e lo Studente è ammesso alla prova orale, se il punteggio totale così ottenuto è maggiore o uguale di 18 punti (cioè se le risposte esatte sono almeno 9).
- Tempo a disposizione: 2 ore.

Cognome e Nome

Firma

Appello del 11-09-2007

1. Sia I l'intervallo costituito da tutti e soli gli $x \in \mathbb{R}$ per cui converge la serie

di potenze reali $\sum_{n=1}^{+\infty} (n+2) 6^{1-n} (x+6)^{n+2}$. Allora $\sup I + 2 \inf I$ vale

2. Sia z=g(x,y) l'equazione del piano tangente alla superficie S di equazione $z = y^3 e^{-8x} + 8(x+2)y^2$ nel punto $(x_0, y_0, z_0) = (0, -1, 15)$ di S.

Allora g(2,0) vale \mathcal{A}

В

3. Sia $f(x,y) = 7xe^{-\arctan(7y)} - x^2\sin(7y), \forall (x,y) \in \mathbf{R}^2$. Allora $\frac{\partial^2 f}{\partial x \partial y}(1,0)$ vale $\boxed{-63}$

- 4. Sia $g(x) = 5x^2\cos(x^3) + x\sin(5x^8)$, $\forall x \in \mathbf{R}$. Sia $P_{11}(x)$ il polinomio di Mac Laurin di ordine 11 della funzione g . Allora $P'_{11}(1)$ vale 35
- 5. Sia s la somma della serie convergente $\sum_{n=1}^{+\infty} \frac{(-1)^{n+2} 4 (\ln 4)^n}{n!}$.

Allora 4s vale $\boxed{-12}$

6. Sia s la somma della serie convergente $\sum_{n=1}^{+\infty} \frac{(-1)^{n+1} 2^{2n+1}}{(11)^n}$

Allora $\frac{16}{s}$ vale 30

- Per ognuna delle 12 domande : 2 punti, se la risposta è esatta ; 0 punti, se la risposta è sbagliata o non è data.
- La prova è superata e lo Studente è ammesso alla prova orale, se il punteggio totale così ottenuto è maggiore o uguale di 18 punti (cioè se le risposte esatte sono almeno 9).
- Tempo a disposizione:

Cognome e Nome

 \mathbf{B}

Firma

Appello del 11-09-2007

- 7. Sia $f(x,y) = 7 + 2x^3 \frac{1}{3}y^3 3x^2 + y^2$, $\forall (x,y) \in \mathbf{R}^2$. Sia (x_m, y_m) l'unico punto di minimo relativo della funzione f. Allora $x_m + y_m + 2f(x_m, y_m)$ vale
- 8. Si consideri, nel piano xy, il poligono T di vertici, nell'ordine, i punti (1,0), (1,1), (0,2), (-1,1), (-1,0), (0,-1). Sia C la curva-bordo di T. Sia $\vec{\mathbf{n}}(x,y)$ il versore normale esterno a C nel generico $(x,y) \in C$. Sia $\vec{\mathbf{F}}(x,y) = (\cos(8y) 8x^3)\vec{\mathbf{i}} + x^5\sin(8y)\vec{\mathbf{j}}$, $\forall (x,y) \in \mathbf{R}^2$. Sia $I = \oint_C \vec{\mathbf{F}}(x,y) \cdot \vec{\mathbf{n}}(x,y) \, ds$. Allora I vale $\boxed{} 2 \downarrow \downarrow$
- 9. Sia $D = \{(x,y) \in \mathbf{R}^2 : 9 \ge x^2 + y^2 ; x \ge 0\}$. Sia C la curva-bordo di D, percorsa tutta una volta in senso antiorario. Sia $\vec{\mathbf{F}}(x,y) = x^4 \cos(2y) \vec{\mathbf{i}} + (e^{-2y} + \frac{2}{3} x|y|) \vec{\mathbf{j}}, \forall (x,y) \in \mathbf{R}^2$. Sia $J = \oint_C \vec{\mathbf{F}} \cdot d\vec{\mathbf{r}}$. Allora J vale
- 10. Si consideri, nel piano xy, la curva C data da $\vec{\mathbf{r}}(t) = 4\sin t\,\vec{\mathbf{i}} 4\cos t\,\vec{\mathbf{j}}, t \in [0,\pi]$. Sia $\vec{\mathbf{F}}(x,y) = y\,\vec{\mathbf{i}} x\,\vec{\mathbf{j}}, \, \forall (x,y) \in \mathbf{R^2}$. Si consideri l'integrale di linea $I = \int_C \vec{\mathbf{F}} \cdot d\vec{\mathbf{r}}$. Allora $\frac{I}{\pi}$ vale $\boxed{ -16}$
- 11. Si consideri, per ogni $\alpha \in \mathbf{R}$, il campo vettoriale $\vec{\mathbf{F}}(x,y) = (\alpha e^{-5x^2} + x^3 \sin(5y^2))\vec{\mathbf{i}} + (\sin(5y^2) + \frac{\alpha}{4} x^4 y \cos(5y^2))\vec{\mathbf{j}}$, $\forall (x,y) \in \mathbf{R}^2$. Qual' è l'unico $\alpha \in \mathbf{R}$ per cui $\vec{\mathbf{F}}(x,y)$ è conservativo in tutto \mathbf{R}^2 ?
- 12. Si consideri, nello spazio xyz, la piramide V avente: come base (nel piano xy) il quadrato di vertici, nell' ordine, i punti (2,0,0), (0,2,0), (-2,0,0), (0,-2,0); come ulteriore vertice (sull'asse z) il punto (0,0,6). Sia S la superficie totale di V. Sia $\vec{\mathbf{n}}(x,y,z)$ il versore normale esterno a S, nel generico punto $(x,y,z) \in S$. Sia $\vec{\mathbf{F}}(x,y,z) = (6\cos x x)\vec{\mathbf{i}} + (6x^5y y)\vec{\mathbf{j}} + (6zy^3 z)\vec{\mathbf{k}}, \forall (x,y,z) \in \mathbf{R}^3$. Sia $J = \iint_S \vec{\mathbf{F}}(x,y,z) \cdot \vec{\mathbf{n}}(x,y,z) \, dS$. Allora J vale J
 - Per ognuna delle 12 domande : 2 punti, se la risposta è esatta ; 0 punti, se la risposta è sbagliata o non è data.
 - La prova è superata e lo Studente è ammesso alla prova orale, se il punteggio totale così ottenuto è maggiore o uguale di 18 punti (cioè se le risposte esatte sono almeno 9).
 - Tempo a disposizione: 2 ore