COGNOME e Nome

 firma

Corso di Laurea in Ing. Edile e Architettura 08/09/2016

1.	[5 pt] (a) Determinare il dominio di $f(x) = \frac{\sqrt{\log(x)}}{x}$.		
	(b) Studiare i limiti di f agli estremi del dominio e stabilire se esistono asintoti verticali/orizzontali/obliqui.		
2.	[6 pt] Calcolare la derivata prima di $h(x) = x^2 - 3x - 4 $, specificando il dominio di h' .		
	Studiare i punti di non derivabilità di h.		
	Determinare gli intervalli in cui h è crescente e quelli in cui h è decrescente.		

3. [6 pt] Calcolare i seguenti limiti, motivando la risposta.

(-)	1:	$n^4 - 1$	(1)
(a)	$\lim_{n \to +\infty}$	$\frac{1}{2n+1}$ sin	$(\overline{n^3})$

(b)
$$\lim_{x \to 3} \frac{x^2 - 5x + 6}{e^x - e^3}.$$

4. [4 pt] Studiare la convergenza semplice e assoluta della serie $\sum_{n=1}^{+\infty} (-1)^n \frac{(n+1)!}{n^n}$, motivando la risposta.

5.	[5 pt]	Stabilire se l'integrale generalizzato $\int_0^{+\infty} \frac{1}{\sqrt{x}(x+2)} dx$ è convergente.			
	In as	ve affarmative calcularle (usanda la castituzione $t = \sqrt{n}$)			
	III Ca	so affermativo, calcolarlo (usando la sostituzione $t = \sqrt{x}$).			
6. [4 pt] Risolvere in $\mathbb C$ l'equazione $z^3=-4+4i$ e rappresentare le soluzioni nel piano di Gauss.					