COGNOME e Nome

 firma

Corso di Laurea in Ing. Edile e Architettura 18/07/2017

1. [8 pt] Sia $f(x) =$	$\left \frac{x^2 - 4}{x - 1} \right $. Determinare $dom f =$	
------------------------	--	--

fè simmetrica (pari o dispari)? (giustificare la risposta)

Determinare i limiti agli estremi del dominio e eventuali asintoti:

Stabilire gli intervalli di monotonia di f ed eventuali estremi:

[4 pt] Calcolare il seguente limite $\lim_{x\to +\infty} x^2 \left(e^{\frac{1}{2x}} - \sqrt{\frac{x+1}{x}}\right).$
[4 pt] Calcolare il seguente limite $\lim_{x \to +\infty} x^2 \left(e^{\frac{1}{2x}} - \sqrt{\frac{x+1}{x}} \right).$
[4 pt] Calcolare il seguente limite $\lim_{x\to +\infty} x^2 \left(e^{\frac{1}{2x}} - \sqrt{\frac{x+1}{x}}\right).$
[4 pt] Calcolare il seguente limite $\lim_{x\to +\infty} x^2 \left(e^{\frac{1}{2x}} - \sqrt{\frac{x+1}{x}} \right).$
[4 pt] Calcolare il seguente limite $\lim_{x\to +\infty} x^2 \left(e^{\frac{1}{2x}} - \sqrt{\frac{x+1}{x}} \right).$
[4 pt] Calcolare il seguente limite $\lim_{x\to +\infty} x^2 \left(e^{\frac{1}{2x}} - \sqrt{\frac{x+1}{x}} \right).$
[4 pt] Calcolare il seguente limite $\lim_{x\to +\infty} x^2 \left(e^{\frac{1}{2x}} - \sqrt{\frac{x+1}{x}}\right).$
[4 pt] Calcolare il seguente limite $\lim_{x\to +\infty} x^2 \left(e^{\frac{1}{2x}} - \sqrt{\frac{x+1}{x}}\right).$
[4 pt] Calcolare il seguente limite $\lim_{x\to +\infty} x^2 \left(e^{\frac{1}{2x}} - \sqrt{\frac{x+1}{x}}\right).$
[4 pt] Calcolare il seguente limite $\lim_{x\to +\infty} x^2 \left(e^{\frac{1}{2x}} - \sqrt{\frac{x+1}{x}}\right).$
[4 pt] Calcolare il seguente limite $\lim_{x\to +\infty} x^2 \left(e^{\frac{1}{2x}} - \sqrt{\frac{x+1}{x}}\right).$
[4 pt] Calcolare il seguente limite $\lim_{x\to +\infty} x^2 \left(e^{\frac{1}{2x}} - \sqrt{\frac{x+1}{x}}\right).$
[4 pt] Calcolare il seguente limite $\lim_{x\to +\infty} x^2 \left(e^{\frac{1}{2x}} - \sqrt{\frac{x+1}{x}}\right).$
[4 pt] Calcolare il seguente limite $\lim_{x\to +\infty} x^2 \left(e^{\frac{1}{2x}} - \sqrt{\frac{x+1}{x}}\right).$
[4 pt] Calcolare il seguente limite $\lim_{x\to +\infty} x^2 \left(e^{\frac{1}{2x}} - \sqrt{\frac{x+1}{x}}\right).$
[4 pt] Calcolare il seguente limite $\lim_{x\to +\infty} x^2 \left(e^{\frac{1}{2x}} - \sqrt{\frac{x+1}{x}}\right).$
$\lim_{x \to +\infty} x^2 \left(e^{\frac{1}{2x}} - \sqrt{\frac{x+1}{x}} \right).$

2.

3.	[5	nt]	Si	consideri	la.	funzione
υ.	U	թտ	DI.	consideri	1a	Tunzione

$$F(x) = \int_0^x t^5 \arctan t \, dt.$$

Calcolare	F'	(x)
Carcorar	- 1	

Calcolare $\lim_{x\to 0} \frac{F(x)}{x^7}$.

Verificare che F è convessa in $[0, +\infty)$.

4. [4 pt] Studiare la convergenza della serie $\sum_{n=1}^{+\infty} \left(\arctan \frac{1}{n}\right) \frac{n!}{(n-1)! + 3^n}.$

- ,	icare che l'int	J_1	$x^4 + 2x^2 +$	- 1			
		. 9					
pt] Risol	vere in C l'ed	quazione z^3	$= -(1-i)^3$				
pt] Risol	vere in C l'ed	quazione z^3	$= -(1-i)^3$				
pt] Risol	vere in C l'ec	quazione z^3	$= -(1-i)^3$				
pt] Risol	vere in C l'ec	quazione z^3	$= -(1-i)^3$				
pt] Risol	vere in C l'ec	quazione z^3	$= -(1-i)^3$				
pt] Risol	vere in C l'ec	quazione z^3	$= -(1-i)^3$				
pt] Risol	vere in C l'ec	quazione z^3	$= -(1-i)^3$				
pt] Risol	vere in C l'ec	quazione z^3	$= -(1-i)^3$				
pt] Risol	vere in C l'ec	quazione z^3	$= -(1-i)^3$				
pt] Risol	vere in C l'ec	quazione z^3	$= -(1-i)^3$				
pt] Risol	vere in C l'ec	quazione z^3	$= -(1-i)^3$				
pt] Risol	vere in C l'ec	quazione z^3	$= -(1-i)^3$				
pt] Risol	vere in C l'ec	quazione z^3	$= -(1-i)^3$				
pt] Risol	vere in C l'ec	quazione z^3	$= -(1-i)^3$				
pt] Risol	vere in C l'ec	quazione z^3	$= -(1-i)^3$				
pt] Risol	vere in C l'ec	quazione z^3	$= -(1-i)^3$				