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Introduction. This paper explains how to compactify the moduli space of
pairs

(smooth genus g complex curve C, theta-characteristic on C)

and how to define natural classes in the Picard group of the compactified
moduli space, as Mumford has done for the moduli space of curves [6]
Although | am convinced that most, if not all, of the facts | am going to
present are known, in one form or another, still | believe it is worthwhile to
give a unified account of them.

As will be apparent, once one hits upon the "right” generalization of the
notion of theta-characteristic to the case of singular curves, the theory is
quite simple and not really different, in any substantial way, from the
theory of standard moduli spaces of curves.

During the preparation of this paper, | have been greatly stimulated by
conversations with Roberto Catenacci, Maurizio Martellini, and Cesare Reina;
to all of them go my sincere thanks.

1. Automorphisms of semi-stable curves. Let C be a compact
connected noded curve. We shall say that a component £ of C 1s exceptional
if it is smooth and rational and meets the rest of C in at most two points:
we will refer to these as the endpoints of E. We shall say that C is decent
if it is semistable, of genus greater than one and, moreover, any two
distinct exceptional components of C are disjoint. In the same way, one can
also speak of decent T-pointed curves of genus one: the only precaution to be
taken i1s that a component containing the marked point should not be
considered exceptional. In the sequel, we shall usually deal only with decent
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curves of genus greater that one, Teaving it to the reader to work out the
genus one case.

Consider a proper flat family of noded curves m:C — T . ouppose all
fibers of 1 are decent. We shall say that m:C—T 1s a family of decent
curves over T, or, for brevity, a decent curve over T 1if, forany teTl and
any exceptional component E of 1'[_1(t), there 1s a neighbourhood of E which
is the pullback of the blow-up at the origin of the surface {xy=22} via z="°
for some function f defined on a neighbourhood of t in T.

Let m:€— T be adecent curve over T. An automorphism of € over T 1is
said to be inessential 1if it induces the identity on the stable model of
m:C— T, Inessential automorphisms are easy to describe: more precisely,
we shall describe the sheaf of inessential automorphisms, that is, the sheaf
of groups on T whose sections over an open set U are the inessential
automorphisms of n-'(U). Pick a point teT, set C=T[_1(t), and let A be the
local ring of t.Let E be an exceptional component of C, and let p,qg be its
endpoints. There is a function f on a neighbourhood of t such that C is,
locally, of the following form:

Xy =1 nearp tn =1 near q,

where x and &t are local equations of E and ym=1. Let I be an
automorphism of €. If J is inessential,

9E(x) = %, GXE) = £

On the other hand, any function in a neighbourhood of p can be written
uniquely as a power series

> ax'+ > byl
P20 >0
where aj, by are functions on a neighbourhood of t.We may then write

gXy)=y+ > aix'+ > by,

P20 >0

where 1+bq is aunit in A. Since xy=37(x)J*(y)=xI=(y), we find that

0=x(> aix'+ > biyh= > ax*'+ > foy'™",
120 50

P20 i»Q

50
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I*(y)=y+ > biyl , fbi=0.
iv0

similarly,

g¥(n)=m+ > cim' , fci=0.
i»0

Since, however, %(y)-%(m)=1, we must have that
(1+bq)(1+cq)=1 , by=cy=0 for i>1.
In conclusion, a local espression for J near £ is
I =x ; L=t ; Iy =uy ; F¥M=u .7,

where u is a unit in A such that f.(u-1)=0. Repeating this for all the
exceptional components Eq, - -,En of C, and writing C, in a neighbourhood
of Ey, as the pullback of the blow-up at the origin of {xy=22} via some
function fj, we conclude that the stalk at t of the sheaf of inessential
automophisms of € is isomorphic to [] A, where

Aj={ueA|fi(u-1)=0}.

Notice that the isomorphism depends on the choice of an orientation on each
Ei, that is, of an ordering between the two endpoints of Ej. Changing the
ordering on the i-th exceptional component corresponds to passing to the
reciprocal in the i-th factor of [] Aj. For each element k=(ky, - kp) of
1T Ay we shall denote by &g the corresponding germ of inessential
automorphism.

On several occasions, we shall need the following simple remark.

(1.1) Lemma. Let n:C—T be aproper flat family of noded curves. Let 1t be
apoint or T and B an exceptional component of n-'(t). If L is a line bundle
on C whose restriction to t is trivial, then L is trivial on a neighbourhood
or £,

Proof. Shrinking T, if necessary, we may find a union D of sections of n
touching all components of n'(t) except E.If m is a large enough integer,
L(mD)‘H,m) is generated by global sections and its first cohomology group
vanishes. Thus, after shrinking T, if necessary, we conclude that R1H*L(mD)
vanishes and L(mD) is generated by global sections. In particular, L(mD) is
trivial on a neighbourhood of E, and so is L.
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We now return to our family 1m:C — T of decent curves. As before, we let
t be apoint of T, A its local ring, and set C=n"'(t) we denote by Eq,  En
the exceptional components of C and, for each i, we let pi,d; be the
endpoints of Ey. Set E]-*=E1 -{pi,qi), and denote by C the curve obtained from
C by removing all the E]-*. For each i, we let Dy (resp., D;i') be the connected
component of C that contains p; (resp., gi). We wish to attach to every n-
tuple k=(kq, -, kpn) of elements of A* a line bundle Mg on a neigbourhood of
C,; strictly speaking, My will be an element of the stalk at t of R1r[*(9€><,

that is, a germ of line bundle around C. Accordingly, we shall feel free to
shrink T when necessary without mentioning it. For each connected
component D of C, choose an open neighbourhood Cp. For each 1, let Vi be a
neighbourhood of pj not containing qgi, and Wi a neighbourhood of gy not

containing pji. We may set things up so that, for each 1, Vi and Wi cover Ey,
and moreover VinCp; and WinCpy; are disjoint. In addition, we may suppose
that Viu Wi is disjoint from V;uWj whenever 1= ], and that the V;, the

Wi, and the Cp cover T. For each D, let Up be the variety obtained by
attaching to Cp a copy of Vi for each 1 such that D=D; and a copy of Wy for
each i1 such that D=Dy . The Tine bundle Mg is then obtained from the trivial

bundle on || Up by identifying the unit section on Wi to ki times the unit
section on Vi. Then Mg is trivial if and only if there are elements hpe A,

where D runs through the connected components of C, such that, for each i,
K =hD1/hD]~. All this can be rephrased as follows. Let " be the graph whose
vertices are the connected components of C and whose edges are the
exceptional components of C. After choosing an orientation on the edges of
[ (for example, we may stipulate that ¢y precedes py for every i) an n-tuple
k of elements of A™ may be viewed as an A"-valued 1-cochain on I the
corresponding line bundle 1s trivial if and only 1f kK is a coboundary. In other
words, the My are classified, up to isomorphism, by HW(I“,AX). Notice, in
addition, that the My are precisely the germs of those line bundles which

are trivial on a neighbourhood of C and on the exceptional components of C.
Let L be a germ of line bundle around C and &k a germ of inessential

automorphism at t; denote by mjy be the degree of L on Ei. A simple
computation using Lemma (1.1) shows that & *L is isomorphic to LMy m,

where kI stands for the multi-index (k™1 ... k™) A useful consequence
of this is that, given two Tine bundles M and M on a decent curve C with
the same restrictions to C and having the same nonzero degree on every
exceptional component, there is an inessential automorphism & of C such
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that M =&"M. Another consequence is that L is isomorphic to & "L if and
only if k™ is a coboundary.

Now let L be as above, and suppose that K is a coboundary, that is, that
for each connected component D of C there is hpe A™ such that, for each i,
k]-:hD]-/hD]--. Assume moreover that L has the same degree m on all

exceptional components of C. wWe know that there is an isomorphism o
between & *L and L. Up to multiplicative constants, in a neighbourhood of
a general point of any component D of C, « is multiplication by hp™. By
this we mean that, if s is a local generator of L, o« maps &x~s to hp™.s.

2. 53pin curves. Let C be a decent curve of genus g>2. A spin structure on
C is the datum of a line bundle ¢ of degree g-1 on C and a homomorphism
o<:§2—>ooc, satisfying the following conditions:

1) T has degree 1 on every exceptional component of C,
11) o 1s not zero at a general point of every non-exceptional component of C.

Condition 1) forces o to vanish identically on exceptional components. Thus,
if C stands for the curve obtained from C by removing the exceptional
components, o« induces a homomorphism o: §|62—>w@. Adain by condition 1),
the degree of C\@Q equals 2g-2-2N, where N is the number of exceptional
components of C. The degree of wg also equals 2g-2-2N. By condition ii),
o must be an isomorphism, so C\“C s a square root of wg. In particular,

when C 1s smooth, € 1s just a theta-characteristic on C.

A spin curve of genus gx2 is a triple X=(C, Ty, xy) where C is a
decent curve of genus g and (Ty, o) 1s a spin structure on C. We shall
often write wy, Uy, etc,, to denote w, U, and so on; conversely, when no
confusion is likely, we shall sometimes refer to C itself as a spin curve and
write (-, o instead of (y,oy. The graph ['x of the spin curve X is the
graph we have associated to C in section 1, i e, the graph whose vertices
are the connected components of C and whose edges are the exceptional
components of C.

One may also speak of spin curves of genus one: these are just decent 1-
pointed curves of genus one with a spin structure on. In the sequel, we shall
usually restrict to spin curves of genus greater that one, leaving it to the
reader to work out the genus one case.

Let ¥, X" be two spin curves of genus ¢ and let C, C" be the underlying
decent curves. An Jsomorphism between x and X' i1s an isomorphism
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&:C—C' such that there is an isomorphism between &*{y and Ty, that is
compatible with the canonical isomorphism between G’*OOX- and wy; notice
that the isomorphism between &*7y and Ty is determined up to sign. We

shall denote by AuUt(X) the group of automorphisms of X, by Autg(X) the
subgroup of inessential automorphisms, and by Autq(X) the quotient of
AUt(X) by Auto(X), that is, the image of Aut(X) in the group of
automorphisms of the stable model of C.

we will now determine Auto(X): in particular, we shall see that it is a
finite group, so Aut(X) is finite, too. We use the same notations employed in
section 1 to describe the inessential automorphisms of C.

(2.1) Lemma. Let X=(C, Ty, oty) and X' =(C, Ty, 0y) be two spin curves
with the same underlying decent curve. Assume thatl the restrictions of Uy
and Ty [0 C are isomorphic. Then there is an inessential isomorphism Gk
between X and X'; the constants ki are determined up to sign.

To show existence we argue as follows. By the discussion in section 1 there
1s a &pn such that GD*ZX and Ty are isomorphic, h being determined up to

coboundaries: we may then assume that (. =Cy,. Thus the only difference
between X and X' lies in the o for each connected component D of C there
Is a non-zero constant mp such that oy =mp- oty on D For each D pick a
sguare root £p of mp. Again by the discussion in section 1 we know that
there is a unigue inessential automorphism & of C such that there is an
isomorphism between G*ZX and Ty that restricts to multiplication by £p on
each D: thus ¢ is an isomorphism between X and X'. The only ambiguity in
the definition of & Ilies in the signs of the £p. Since & restricts on Ei to
multiplication by JBD]-/JBD]-‘, this proves the last assertion of the lemma.
Lemma (2.1) shows, among other things, that it is incorrect to view 2
spin curve x as a curve plus a square root of a well-specified line bundle,
for the isomorphism class of sz is not well determined: only the
restriction of sz to C is. For us, however, the main consequence of the

lemma is a description of AutolX).

(2.2) Lemma. Auto(X) is isomorphic to the group of coboundaries
BW(FX,ZQJ, or, which is the same, to CO(FX,ZQJ/HO(FX,ZQJ.

We let C be the underlying decent curve of X, and Eq, - -,En 1ts exceptional
components. By (2.1), the inessential automorphisms of X are those &k such

that k is a coboundary and kij=+1 for every 1. Put otherwise, if, for each 1,
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we write m; to denote the automorphism &g where kij=-1 and kj=1 for
j=1, the elements of Autp(X) are the products

TTn , eiels,

such that (g4, ,en) belongs to B1(|“><, Z2). This proves (2.2).

3. The number of theta-characteristics. It is well known that, on a
smooth curve of genus ¢, there are 229 non-isomorphic theta-
characteristics. wWe wish to show that, in a certain sense, the same is true
also on a stable curve C. What are we to take as a theta-characteristic on
C7? The first answer that comes to mind is that one should consider, for all
decent curves C having T as stable model, all line bundles T such that
(C,T,00) is a spin curve for some o<:§2—>ooc. If we did this, however, we
would get, in general, infinitely many non-isomorphic line bundles, since, as
we observed in section 2, the isomorphism class of ZQ is not well-defined.
The solution is to fix, for every C, one ZQ and consider all its square roots:
this gives the correct count.

To see why this is so, let N be the set of nodes of C that are not blown
up in passsing from C to C, and notice that, in order for a spin curve with C
as underlying decent curve to exist, a necessary and sufficient condition is
that, on the normalization of each irreducible component of C, there should
be an even number of points mapping to N. If we view the nodes as edges of
the dual graph I of T, this translates into the fact that the sum of the
nodes in N should be a cycle modulo 2. In other words there are 2N
acceptable ways of blowing up C, where h=h4(I"). Fix one acceptable C, and
let (C, T, o), (C, T, &) be two spin curves such that 72=772; then U®T | is

a point of order two in the Picard group of C. >ince the number of these
points is 22971 we get, altogether, 229 "theta-characteristics".

(3.1) Example. Let C be the union of two smooth components Cq and Cop of
genera o and g-o, meeting at one point p: in this case p has to be blown
up and a "theta-characteristic® is a line bundle restricting to theta-
characteristics on Cq and Co and to O(1) on the exceptional component. In
other words, to give a "theta-characteristic on T" is equivalent to giving
theta-characteristics on Cq and Co.

(3.2) Example. Let T be an irreducible curve with one node p: in this case

there are two kinds of "theta-characteristics”. The first Kind are just the
square roots of wg. These can be obtained as follows. Let C be the
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normalization of C and let g,r be the two points of C mapping to p. Then a
square root of wg is a square root of welg+r), with the fibers over g and r
suitably identified. As there are two possible identifications, this yields
2.22972=229"1 "theta-characteristics”. The remaining 2297 are obtained by
blowing up C at p and suitably glueing a theta-characteristic on C to 0(1)
on the exceptional component.

(3.3) Example. Let C be the union of two components of genera g-o—1 and
® meeting at two points p and g. We have two choices. Either we take a
square root of wg - this accounts for 22971 "theta-characteristics" - or we
blow up both nodes and suitably glue theta-characteristics on the two
components with @(1) on both exceptional components.

(3.4) Example. Let C be the union of two components of genera g-«-2 and
® meeting at three points p, g, and r. We may blow up one of these points,
or all three. Each of these four alternatives produces 4.22%.220-20-4_529-2
‘"theta-characteristics”.

(3.5) Example Let T be the union of four components of genera o, B, ¥,
g-o-B3-y-3, each meeting the other three at one point. The dual graph of C
is a tetrahedron. Blowing up can be performed, up to automorphisms of the
graph, according to one of the following schemes, the marked edges
corresponding to the nodes to be blown up.

Altogether, there are 8 acceptable ways of blowing up T, each yielding
22973 "theta-characteristics”,

4. Families of spin curves. Let m:C — T be a family of noded curves. A
spin structure on 1 is the datum of a Iine bundle ¢ on € and a
homomorphism o<:§2—>oon such that the triple (H”(t),C‘H_“t),a‘n_m)) is a

spin curve foreach teT . A family of spin curves of genus g parametrized by
a variety T, or, for brevity, a spin curve of genhus ¢ over T, 1s a triple
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X=(m:C—T,Ty,0y), where m:C—T is a family of noded curves of genus g,
and (Ty,oty) is @ spin structure on 1. When no confusion is likely, we will
often refer to m:C — T itself as a family of spin curves and write C{p, o
instead of Ty, oty.

A deformation of a spin curve X 1s the datum of a family X of spin
curves parametrized by some variety T, a point tpoeT, and an isomorphism
from X to the fiber of X over to.

Given a family of spin curves (or a deformation) as above and a
morphism f:>— T, there 1s an obvious notion of pullback of X to a family
(or deformation) over 5 . The notion of isomorphism of families of spin
curves over T, or deformations over the pointed variety (T,tg), 1s defined
exactly as for ordinary spin curves.

(4.1) Lemma. Let X=(n:C —T,Ty,xy) be a family of spin curves. Then
n:C— 1T isafamily of decent curves.

Proof. We fix our attention on a point teT and an exceptional component E
of n”(t), with endpoints p and g. There are neighbourhoods Vy of p and Vg

of g such that € is of the form:
xy =f inVp | En=9 1In Vg,

where f and g vanish at t and x and £ wvanish on E. We wish to show that
one may assume that ym=1 on a neighbourhood of E-{p,q). Let A’ be a
neighbourhood of E and B a neighbourhood of the complement of E-{p,qg) in

n . shrinking T, 1f necessary, we may assume that A" and B cover C; we
may also assume that A'nB is contained in Vpu Vg, and that Vp and Vg are

disjoint. Set
A=A-({y=0luim=0}1,

and let ™M be the line bundle on € whose transition function, relative to the
covering {A,B}, equals v on AnBnVy and ’n” on AnBnVg:notice that the

restriction of ™M to E is trivial. By Lemma (1.1), M is trivial on a
neighbourhood of E. This means that there are nowhere wvanishing
holomorphic functions hq, ho, hz, defined, respectively, on a neighbourhood
of p, aneighbourhood of g, and A, such that

hz=vhy . h3=’ﬂ_1-h2.

Replacing x, v, £, n with h1’1-><, hiy, hoot, h2’1-n proves our assertion.
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The homomorphism oy yields a homomorphism 3:L— 0., where L
stands for Zf@wn”. The restriction of L to E has degree two. We denote

by L' the line bundle wose transition function, relative to the cover (A,B},
equals v on AnBnVp and m on AnBnVg. The restriction of L' to E also

has degree two. It is then a consequence of Lemma (1.1), applied to L'® L‘1,
that there are nonzero sections sq and s»2 of L defined, respectively, on a
neighbourhood of p and on a neighbourhood of g, such that sy =’n2-52. Write

Bs)= > aix'+ > biyl , Blsp) = 2 citl+ ZO din',
12

i>0 120 i>0

where the aj, by, etc, are functions on T. Clearly, a; and cq are units, so,
replacing x, &, T, g with aix, cq&, a4f, c1g, we may suppose that they are
equal to 1. Using the fact that, away from {y=0} and {m =0}, one can make
the substitutions

x=fm , g=gn' , y=n,
and equating terms of degree 1 in m in the identity
(4.2) B(s1) = M7 B(s2)
we then conclude that f=¢g. As ym=1, this finishes the proof of (4.1).

(4.3) Remark. The proof of (4.1) gives a bit more. In fact, by comparing
terms of all degrees in (4.2), we find that there is a nowhere zero function
¥ inaneighbourhood of E such that 30y -s1) =x, By -S52) =¢&. Therefore there
are local generators sp and sq of sz at p and g such that

oy(Sp) =xr ,  oyglsg)=§r,

where r is a generator of wp in aneighbourhood of E.

(4.4) Lemma. Let X=(M:C—T,Ty,xy) be afamily of spin curves, and let &
be an automorphism of X [If T is connected and, ror some teT, the
restriction of & to m '(t) is the identity, then & is the identity.

Proof. It suffices to deal with the case when T is the spectrum of an

artinian local ring A. We shall adopt the same notation as in section 1.
Clearly, & is inessential, hence of the form &g for some elements Kij=1+Uj

of A* such that fi.u;=0; moreover, our hypotheses imply that each u;
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belongs to the maximal ideal of A. Notice that k12¢1 unless uy=0. In fact,
to say that k]-2=1 means that

0= 2-u1+u]-2,'

since u; 1s nilpotent, and we are not in characteristic two, we conclude by
descending induction that u;=0. Since Ty and &~ Ty are isomorphic, there
are elements hp of A such that k]-:hDT/hD]-- for every 1. on D, the
isomorphism between Ty and &*{y is "multiplication by hp". 5Since this
isomorphism is compatible with the natural one between wp and ¢*wy, and
this, as @ 1is inessential, is the identity on each D, hD2=1 for every D.
Thus, for every 1, k12=1. As we have observed, this implies that ki=1, s0 &

is the identity. This proves (4.4),

Let X=(C,Ty,0ty) be aspin curve, and let C be the stable model of C.

Let Eq,  ,En be the exceptional components of C, and denote by rq, -+, rp
the corresponding nodes of C. Consider the universal deformation ¢:D —B

of CT: here B 1is the unit policylinder in the space of 3g-3 complex
coordinates tq, -, T3g-3, and we may suppose that the coordinates have

been chosen so that, for 1 between 1 and n, the locus {ti=0} is the locus

where the node ry persists. Let B be another copy of B, with coordinates
ty, -, tsg-3, and let ¢':D'—B be the pullback of ¢:D—B via the base

change
5N ; Ti=ty , i=n+1, -, 30-3.

For each 1, ¢'|(t;=0) has a section consisting entirely of nodes and passing

through ri. Blowing up these sections for i=1, - ,n yields a family of
decent curves ¢:D—B, with D smooth and C as central fiber. We write
€1, ,8n to denote the exceptional divisors in D, indexed in such a way

that €inC=Ey for each 1. We wish to put a structure of family of spin
curves on ¢:D—B. Set L=wel(-> €y); by the discussion in section 1 we may

alter the identification of C with the central fiber of ¢ by an inessential
automorphism in such a way that the restriction of L to C is isomorphic to
C><2- We may then extend Ty to a square root of L on aneighbourhood of the

central fiber: call this Ty, and let auziuzﬁwg be the composition of the
isomorphism of Cu2 with L and the inclusion of L in we. By shrinking B if
necessary, we may suppose that ¢, 1s defined on all of D. Clearly, the triple
U=09:D—B,Ty,0y) 15 a family of spin curves. Lemma (2.1) tells us that,
altering the identification of C with the central fiber of ¢ by an
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inessential automorphism, we may suppose that the fiber of 1 over O€B is
isomorphic to X. We shall call the family U , together with the
identification of its central fiber with X, which we denote by ¢, a
universal deformation of X. Clearly, this terminology needs to be justified.
Before doing so, we need one observation concerning W. The action of the
group AUt(C) on T extends to equivariant actions on D and B. Let I'" be the
quotient of Aut(C) modulo the subgroup of those automorphisms that act
trivially on B, and let G' be the group of all the Tiftings of elements of
to automorphisms of B. The group G' fits into an exact sequence

| —>H—=0—=—1,
where H 1s the group generated by all the automorphisms of B of the form
Costion b tier, o)== 0o b, =t b, )

Denote by G the fiber product of G' and Aut(C) over I''. The group G acts on
the fiber product of B and D over B, i. e, on D', and this action 1ifts to an
action on D; moreover, there is an exact sequence

(4.5) 1—=H—=06— AUt(C)—1.

The group G acts on the central fiber of ¢:D—B, that is, on C. The action
of H is particularly easy to describe. The automorphism

G tio, b iy, =0 g, =t e, )

of B lifts to an automorphism & of D' restricting to the identity on C: we
want to see what this induces on D . Near ri, D' is of the form
{(x,y,t)\xy=t12}. Blowing up along x=y =0 1is performed by a substitution

Xx=2z ;, y=2zv , Liy=zw,

2

and the proper transform of D' has equation v=w<, while the equation of

the exceptional divisor is z=0. Thus a system of local coordinates on D is
given by z, w, and the t; with j=1. Also, ¢ lifts to D, and its lifting is

given, in local coordinates, by
(z,w, tq, )=z, -w, tq, ).

oince w restricts to a linear coordinate on Es wvanishing at one of the
endpoints of Ei, the 1ifting of & restricts, on C, to the inessential
automorphism my (cf. section 2). We shall use the same symbol m5 to
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designate both the lifting of & to D and the automorphism of B it covers,
namely tjr— -1y,

It follows from the above computation that G acts effectively on C, 1.
e, that it is a subgroup of Aut(C); it is also easy to show that Aut(X) is a
subgroup of G and that

AUt () = AULCONH .

However, since this is a formal consequence of Proposition (4.6) below, we
omit the proof.

Let X be a spin curve with C as underlying decent curve. As usual, we
denote by Eq, - ,En the exceptional components of C. Consider the universal
deformation of X constructed above. Recall that this consists of the family
of spin curves W and of the isomorphism « from X to the central fiber of
U the family of decent curves underlying W is ¢:D—B. We wish to show
that any small deformation of X is (uniquely) a pullback of (U, ).

(4.6) Proposition. Consider a deformation of X, consisting of a family of
spin curves X over T and of an isomorphism @from X to the riber of X over
toel . Let m:C— T be the family of decent curves underlying x. Then,
possibly arter shrinking T, there is a unique cartesian diagram

e S )
[ le
T—4 8

such that:

1) y(to) =0,

1)y = 8oy,

117) The identity on C is an isomorphism between X and the pullback of .

Proof. wWe first discuss uniqueness. Given vy, the unigueness of & follows
from (4.4). The morphism Yy is certainly unique up to composition with
products of automorphisms of B of the form my. Unigqueness of vy follows
from the fact that such a product acts non-trivially on X.

Wwe next prove existence. Lemma (4.1) shows that, possibly after
shrinking T, a diagram as in the statement of the proposition exists; the
only trouble is that i) and iii1) are not necessarily satisfied. We can however
assume that i) is satisfied and that L|f1oéoup induces the identity on the
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stable model of C. By pullback via y and o we get, on €, another spin
structure o<:§2—>oon. The homomorphisms o and oy are isomorphisms

along C, except at the endpoints of exceptional components. Let then E be

an exceptional component, and p,q its endpoints. Using the same notation as
in (4.1) and (4.3), Remark (4.3) says that there are local generators sp, sp’

(resp., Sg, Sq) for §2 and ZXQ at p (resp, at g)and a generator r for wy on
a neighbourhood of E such that

(4.7) o(sp) =x-r=oy(sp) , olsg) =& =o0ysq).

The generator sp is uniquely determined up to multiplication by functions of
the form 1+y-v, where f-v=0, and similar considerations apply to Sq, Sq,
and sp' . We may then extend the isomorphism 0<Xoo<‘1 to neighbourhoods of p
and g by sending sp to sp and sq to sq . Hence CX2®C*2 is trivial on a
neighbourhood of C, as well as on the exceptional components. There are
units w and h such that, along E-{p,qJ,

Sp=W<Sqg , Sp =hwSqg.
From this and (4.7) we conclude that w-£=x=h-w £, hence that
fh=mth=mf=1.

oince §K2®§‘2 is trivial on E, we may find power series 1+Zc1y1 and
1+Z dmT with coefficients in the local ring of to in T such that

h(1+ > ciyh=1+> din'.

i>0 i20

Multiplying this identity by f, recalling that ym=1, and comparing terms of
the same degree in m we find that

f-ciy=7dj=0 forevery i.

MNow set

A=(T+do) 1+ > dimh =1+ > dim',
iz0 i»0

=1+ 2 oyl
i»0

Notice that f-diy =0 for every 1 and, moreover,

(1+dg) A =hH .
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Replacing sq and sp° with A-Ssg and H-sp’, we may therefore suppose that

h=1+dg. Repeating this for all the exceptional components Eq, - ,En of C,
and using the notation of section 1, we conclude that there is he ][ Ay such
that Zf is isomorphic to Zf@ Mp . Each hy can be written as the square of
some kije A since at least one among 1-kj and 1T+ki is aunit, from f-hj="f
we get that either f-kKy=f or f-ky=-f, hence we may choose ki so that
f-ki=f.Replacing our original & with ceax we may therefore suppose that
ng and §2=6*§u2 are isomorphic. Keeping track of the way K was
constructed, we may also suppose that the isomorphism between sz and Zz
is compatible with oy and «. Since ({y®T 12 is trivial, {y® T ' is of the
form Mpm, where mij==+1 for every 1. Composing y and o with an
appropriate composition of automorphisms of B and D of the form mi, we
may therefore suppose that the isomorphism between sz and ZQ is induced
by an isomorphism between Cy and . To show that U does indeed have the

required universal property it remains to show that we can arrange things
S0 that w =50y, where ¢ and ¢ are the identifications of X with the
central fibers of X and W, respectively., What we can say at this stage is
that L|J‘1oéoup is an inessential automorphism of the spin curve X, hence a
product & of automorphisms of C of the form m;. Replacing y and & with
Geoy and G5 concludes the proof of (4.6).

It follows from (4.6) and (4.4) that the action of AUt(X) on X extends to
an action on all of W, that is, to compatible actions on D and B that
respect the spin structure.=== In particular, this implies that Aut(X) is a
subgroup of the group G, as announced before the statement of (4.6).

5. Moduli of spin curves. Wwe denote by Sg the set of isomorphism
Classes of spin curves of genus g, and by 5g the subset consisting of
classes of smooth curves. Given a spin curve X we denote by [X] its class.
we wish to define a natural structure of analytic variety on >g. Fix a spin
curve X, and consider its universal deformation U, ; let By, be the base of
Uy. The natural way to introduce an analytic structure on a neighbourhood
of [X] is to transplant the structure of Bx/Aut(X) via the map

By:By/AuUtX) — 5y

provided this can be shown to be injective. Assume, for the moment, that

this has been proved, and let ¥ be another spin curve such that the images
of By and By intersect; Tet [Z] be a point in the intersection. Since Uy is a
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universal deformation of any one of its fibers, there is a commutative
diagram

f h

B,
~ |
5S¢

By By

after suitably shrinking B, , of course. As f and h are holomorphic open
embeddings, this shows that the analytic structures induced by (y and (y

are compatible,
We now show that 3y 1s injective. We adopt the notations we used in

section 4 when constructing universal deformations. Thus, the decent curve
underlying X is C, its stable model is T, the universal deformation of C is
0:D—PB, the family of curves underlying the universal deformation of X is
¢:D—B, and so on. What we need is the following.

(5.1) Lemma. Let a and b be points of B such that there is an isomorphism
vio Na)y— ¢ ().

Then there is an automorphism & of X such that s(a)=Db and that, viewing
& as an automorphism of D, the restriction of & to 9_1(a) s Y.

Proof. Denote by a and b the images of a and b in B, and let
Yo @—5 (D)

be the isomorphism induced by vy . There is an element & of Aut(C) such
that o(a)=Db and such that the restriction of &, viewed as an automorphism
of D, restrictsto & on ¢ '(a). Then & lifts to an element & of the group G
appearing in the exact sequence (4.5). Multiplying ¢ by a suitable element
of H, we may suppose that s(a)=Db. Clearly 6’40}{ 1s an inessential
automorphism of 94(8),‘ moreover

¥y % = G (@ TED) = wel-T ) = Ty)?,

SO 6’_10}{ Is a product of automorphisms of the form mi,, £=1, -, m, where
ty,, -, ti, are those coordinates, among tq, -, tpn, such that ti(a)=0. It

follows that we may suppose that & restricts to y on 9_1(21): it remains to
show that & belongs to AUt(X). Since (G*Cu)2=§u2 and since &=y =Ty 0N

M. Cornalba, Moduli of curves and theta-characteristics, january 1989 - 16



9_1(21), it follows that &*Cy =7y onall of D. This finishes the proof of
(5.1,

It is apparent from the construction of Sg that the natural map

from the moduli space of genus g spin curves to the moduli space of stable
curves of genus g is holomorphic and, moreover, that

agg = gg_Sg

is a closed proper analytic subvariety of Sg, SO >5g 15 an open subvariety of

Sq.

(5.2) Proposition. The variety Sq is normal and projective. The natural
morphism ¥ :5Sq—Mgq is finite.

Proof. Normality immediately follows from the construction of Sg. As x is
certainly finite-to-one, it will suffice to show that it is proper and
separated to prove it is finite, and hence that Sg is projective, since l\_/lg is.
Suppose X 1s not separated. since the restriction of ¥ to 5g Is certainly

separated, this means that there are two non-isomorphic spin curves X and
X', with the same stable model, and neighbourhoods U and U of X and X' in
5¢g such that Unsg=Un3>g. This, In turn, implies that there are two
families of spin curves, X and X', over the unit disk A such that the central
fiber of X is X, the central fiber of X' is X', all other fibers are smooth,
and there 1s an isomorphism of spin curves ¢ X|aA-(o) — X |a-(0), Notice that
w extends to an isomorphism between the stable models of X and X' That
1s separated is then a consequence of the following auxiliary result.

(5.3) Lemma. Let m:C— A and 1 :C — A be families of decent curves over
the unit disk with the same stable model m:€— A Let (T, o) and (T, ') be
spin structures on T and T'. Suppose that every fiber of T, except possibly
the central one, is smooth, and that (T,c) and (T, o) agree on - A-{o)).
Then the identity on (A -{0)) extends to an isomorphism of spin curves
over A between M. C— A and m:.C — A,

Proof of the Temma. Let D be the graph of the meromorphic mapping from
C to €' obtained by composing ©— &€ with the inverse of &' — €, and let
¢:D— A be the natural projection. Clearly, ¢ is a family of decent curves,
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Denote by L and L' the pullbacks of T and T to D. The isomorphism
between T and ¢ away from the central fibers extends to an isomorphism
between L(D) and L', where D is a Cartier divisor supported on the union of
the exceptional components of the central fiber of ¢. Let E; be one such
component. Notice that the intersection number (D-Ej) is even; moreover the
degree of the restriction of < (resp., of L'2) to Ei 1s O or 2 depending on
whether Ey is contracted or not by the projection to C (resp., to C'). Hence

(D.Ey) = é%(t@L‘UQ-Eo

can be even only if it is zero. Thus D vanishes, and the projections from D
to © and C° are isomorphisms. The fact that the isomorphism between
and ¢ away from the central fiber extends to one between L and L' means
that the isomorphism between € and €' i1s an isomorphism of families of
spin curves. The proof of Lemma (5.3) is complete.

To prove (5.2) it remains to show that y is proper. To do this, it will
suffice, for every stable curve C, to find a neighbourhood U of [C] in My and

a commutative diagram

Wt )

le L x

v—35 oy

such that & is onto, and y and ( are proper. To construct these, let ¢:D — B

be a universal deformation of C=§_W(O), let rq, -, I'm be the nodes and I
the dual graph of CT. We may suppose that there are coordinates ty, - 5, T3g-

s on B such that, for i between 1 and m, the locus {Ti=0} is the locus
where the node ry persists. We let U be the image of B in l\_/lg and V the

inverse image of B under the map ¢:C797 7 — €977 defined by
Plty, - tsg3) = (0%, tm?, tmet, o, t3g-3) .

we next construct 229 families of spin curves over as many copies of vV, let
W be the disjoint union of these copies, and let & be the map that sends a
point in a copy of V to the isomorphism class of the fiber. The construction
is as follows. Let D' be the fiber product of D and V, and ¢ D' — V the
projection map. Pick nodes ry,, -+, ri, In C insuch a way that the set of the

remaining ones, viewed as an element of Cq(I", Z2), is a cycle For each £
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between 1 and h there is a section of ¢ passing through rij, and consisting
entirely of nodes: blow up these, denote by D the resulting variety, by

€i1, ,&i the exceptional divisors, and let ¢: D—V be the projection. Then
choose a square root ¢ of wg(—z €ip) and let o<:§2—> wo be the inclusion:
this defines a spin structure on ¢:D — V. By the count in section 3 there
are, altogether, 2729 possible choices of amod. 2 cycle in [ and of a square
root, giving rise to 229 non-isomorphic families of spin curves over (copies
of) V. Moreover, by Lemma (5.3) and by the discussion in section 3, the
fibers of these families over any given v eV are, up to isomorphism, all the
spin curves having the stable curve corresponding to v as stable model. This
shows that & is onto and finishes the proof of (5.2).

It follows from Proposition (4.6) that 54 15 a coarse moduli variety for

spin curves of genus g.
The explicit description we have given of the local structure of 39

makes it easy to determine how the covering x:5y— Mg ramifies over the
boundary of Mg. More exactly, given a stable curve C and a universal

deformation ¢:D—B of it, what is easy is to describe is how the covering
B'— B ramifies, where B’ is the (closure of) the set of couples

(point beB, theta-characteristic on o~ '(b)) |

In fact, if X is a spin curve having C as its stable model, and B is the base
of its universal deformation, as described in section 4, in a neighbourhood
of [X] the covering in question is just

B/Auto(X) =B .

We shall illustrate this by describing what happens in each of the examples
of section 3; as usual, we let C be the decent curve underlying x.

(5.3) Example. Let T be the union of two smooth components Cq and Co
meeting at one point p (cf. Example (3.1)). In this case C is the blow-up of
C at p and the generator of Auto(X)=7%Z> actson B by

(tr, - t3g-3)— G, te, o t3g-3)
so B' is just the disjoint union of 279 copies of B.

(5.4) Example Let C be an irreducible curve with one node p (cf. Example
(3.2)). There are two cases:

a) C=C, hence B=B.
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by C is C blown up at p, Auto(X) is trivial, and hence B/Auto(X) —B is of
the form

(ty, o, t3g- 39— (1% te, ,t3g9-3) .

Thus B' is the union of 27971 copies of B and of 27977 double coverings of
B branched along {tv1=0].

(5.5) Example. Let T be the union of two components of genera g-o—1 and
oo meeting at two points p and g (cf. Example (3.3)). There are two cases:

a) C=C, hence B=B.
b) C is T blownup at p and g, the generator of Auto(X)=7Z> acts on B by
(L1, o tsg-30— (-1, -t t3, -, 3g-3),

hence B/Autp(X) is the quadric {xy=22} in the C2972 with coordinates

x,y,z,t3, +, and B/Auto(X) — B is the double covering
,y,z,t3, 0, tag-3)— Gy, U3, o t3g-3)
Thus B' is the union of 2297 copies of B and of 29972 copies of (xy=27).

(5.6) Example. Let C be the union of two components of genera g-«-2 and
oo meeting at three points p, g, and r (cf. Example (3.4)). There are two
cases:

a) C is C blown up at one of the nodes, say p, Auto(X) is trivial, hence this
case is like Example (5.4) b).

b) C is T blownup at p, gand r, the generator of Auto(X)=7Z2 acts on B by
(L, t3g-3)0— =ty -to, 13, by, -, t39-3),
hence B/Auto(X) is the locus
y . _ 2 .2 _
TX2=Xa™, KIXZ=X5T, KoX3=Xg", X1XoX3=XaXsKe

in the C°9 with coordinates xi,xo, - Xe,ta, - and B/Autg(X) =B is the
four-sheeted covering

(K1, X2, %e,ta, ,13g-3)— (X1, X2, x3,t4, +, t3g-3).
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Thus B' is the union of 27974 copies of case b), of 22973 double coverings
of B branched along (=0}, 2797 double coverings branched along {t2=0),
and 27977 double coverings branched along {t5=0}.

(5.7) Example. Let T be the union of four components of genera o, B, Y,
g-o-B-y-3, each meeting the other three at one point (cf. Example (3.5)).

There are three cases:

a) C is C blown up at two of the nodes, not lying on the same component,
say rq and rs. Since Auto(X) is trivial, B/Autg(X) is smooth and
B/Autg(X) — B is the four-sheeted covering

(t1, o, t3g-3)0— (015 L, - 152 e, t3g-3) .

b) C is T blown up at three of the nodes, lying on the same component, say
r, rz,and rs. The generator of Autg(X)=7Z- acts on B by

(L1, o t3g-3)r— (-1, -t -t3,t4, , 139-3),
hence this case is like Example (3.6) b).

c)C is C blown up at all the nodes, and Auto(X)%me is generated by

(T, o, tsg-3)r— (-, -to, -tz tg,  L3g-3),
(L1, o tsg-3)r—(ty,to, -3, -tg,-ts,ts, -+, 3g-3),
(L1, o, tsg-3)0r—(ty, T, t3,ta, -5, -tg, t7, -, t3g-3).

Thus B/Autp(X) is the locus
y . _ .2 _ .2
IX3X4= K77, XIX2X6= X8, X2X3X5=X9",

_., 2 _
KAXSKE=X107, X7 X10=X1 X6

in the C29°" with coordinates %1 ,x2, +,X10,t7, -+, and B/Auto(X) =B is
the eight-sheeted covering

(K1,%2, ,%X10,t7, , tag-3)—= (X1, Xe, U7, -, t3g-3) .
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20-5

Hence B' is the union of 15.2297° components, 5.2 of them like in case

a), 4.22972 Jike in case b), and 2497° Jike in case c),

6. Even and odd spin curves. |t is classical that even and odd theta-
characteristics do not mix; in other words, under deformation, even theta-
characteristics stay even and odd ones stay odd. The same is true for spin
curves. We say that a spin curve X is even (resp, odd ) if hO(CX) is even
(resp., odd). Mumford's proof [S] that the parity of a theta-characteristic is
a deformation invariant extends, with very minor modifications, to our
situation; accordingly, we will point out what the modifications are,
instead of repeating the proof. Given a theta-characteristic ¢ on a smooth
C, Mumford's argument is based on the following observations. First of all,
if T=> pj is an effective divisor of sufficiently high degree on C, with all
the pi distinct, then HO(C(—F)) and HWC(I‘)) vanish, so HO(C), HO(C(F)), and
HO(T/T(-T)) are subspaces of HY(T(T)/T(-T)) such that

HO(D = HOUr ) nHOT/T-m))

Secondly, HO(Z(M)) and HY(T/T(-T)) are maximal isotropic subspaces with
respect to the non-degenerate bilinear form on HY(Z(M)/T(-T))

(a,b)— > resp(ab),

where a and b are liftings of a and b to sections of ) in a

neighbourhood of " and the product is induced by Zszc. The same
argument applies to a possibly singular spin curve X=(C, Ty, o) if we take

=7y, choose [ so that it is made up entirely of smooth points, has high

degree on all non-exceptional components of C and does not touch any
exceptional component, and, in the definition of the bilinear form on
HY(Z(r)/T(-T)), interpret the product of a and b as coming from
o<><:§><2—>ooc.

(6.1) Example. Let T be the union of two smooth components Cq and C» of
genera « and g-o« meeting at one point p, C its blow-up at p, and E the
exceptional component of C. wWe know (Example (3.1)) that a spin structure
on C comes from glueing theta-characteristics Ly and Lo on Cq and Co to
@C1) on E. Such a spin structure is even if Ly and Lo are both even or both
odd, odd i1f one among L1 and Lo 1s even and the other odd. The spin
structures that are even on both components number
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207 1(2%41).297%71(207% 4 1) = 2972(204 207% 4 2%y 1)
those that are odd on both components

2071 (20-1).297 % 1 (207% 1) = 2972(20-297%- 2% )
those that are even on Cq and odd on Co

2071 (2%41). 29771 (2978 1) = 2972(294 297% - 2% _1) |
those that are odd on Cq and even on Co

2071 (2%-1).297% 1 (207% 4 1) = 2972(29-207%4 2% _1)

Altogether, then, there are 297 1(29+1) even and 297 '(29-1) odd "theta-
characteristics”, as in the smooth case,

(6.2) Example. Let T be an irreducible curve with one node p. We know
(Example (3.2)) that in this case there are two kinds of "theta-
characteristics”. The first kind come from theta-characteristics on the
normalization € of C, even (resp., odd) ones on C yielding even (resp., odd)
ones on C. Moreover each theta-characteristic on C corresponds to two on
C. This accounts for 2:2972(297 1+ 1) even and 229742971 - 1) odd "theta-
Characteristics”. The remaining ones come about by suitably identifying the
fibers at g and r of square roots of welg+r), where g and r are the points
of C mapping to p. Let L be such a sqguare root: by Riemann-Roch we have

that
hO(L) = hOL(-q-r) + 1,

so there is a section s of L that does not vanish at both g and r. In fact, s

does not vanish at either one of these points since 52, which is a section of
we(g+r), must have opposite residues at g and r. This also shows that

there are two possible identifications between the fibers of L at g and r,
one sending s(g) to s(r), the other sending s(g) to -s(r). Clearly, the
resulting "theta-characteristics” have opposite parity, so we get an equal
number, 229‘2, of even and odd "theta-characteristics”. Altogether, then,
there are on C

22972, 297129711y = 2971294+ 1)
even "theta-characteristics” and

22972, 29-1(29-1_1y = 29-1(29_1)
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odd ones, as expected.

A conseguence of the deformation invariance of the parity of a spin
curve is that Sg s the disjoint union

Sg=54US5,
of the two closed subvarieties consisting, respectively, of the even and odd

spin curves of genus ¢. As is natural, we write Sg to indicate SgnSq, and
Sy toindicate S4nSg.

(6.3) Lemma. 54 and Sq are irreducible.

This is classical. Here we sketch a proof by degeneration. We let Mg be the
complement of the branch locus of X:SQ—H\_/IQ, and denote by ¥, and ¥ _ the
restrictions of ¥ to 35 and Sg. It is enough to show that, given a point p
in l\_/l'g, the monodromy action of the fundamental group of l\_/l'g on Xﬂ(p) and
X__1(p) is transitive. The proof is by induction on g.

The cases g=1,2 are dealt with separately. View a smooth curve C of
genus two as a double covering of the Riemann sphere ramified at six points
J1, ,0s. Then all odd theta-characteristics on C (there are six of them)
are of the form O(gyi), while all even ones (there are ten of them) are of the
form O(gy+gn-dg), whith ds, dn, g distinct. Therefore the monodromy group
acts transitively on even and odd theta-characteristics. Likewise, viewing a
smooth elliptic curve C as a double covering of the Riemann sphere ramified
at four points dq,---,d4, and placing the origin at gy, all even theta-
characteristics on C are of the form O(gij-gy) whith i>1, while there is a
single odd one, and we conclude in the same way.

Now take g»>2. We begin by noticing that, if i>1 and [C] is a general
point of Ay, that is, if C is the union of two general smooth curves Cq and
Co of genera 1 and g-1 joined at a general point, then [C] belongs to My. In
fact, for i>1 such a C has no non-trivial automorphisms, while the only
non-trivial automorphism of C for i=1 is the -1 involution on the elliptic
tail, which acts trivially on spin structures. Taking i=1, Example (6.1) and
the induction hypothesis show that Xﬂ(p) is divided in two subsets A4 and
B, one consisting of 3.29 2(29 1 +1) points, the other of 29 2(29°1-1)
points, on each of which a subgroup of the monodromy group acts
transitively. If g»> 3, taking i=2 shows that Xﬂ(p) is also divided in two
subsets A2 and B2, one consisting of 5.2972(297°24 1) points, the other of
3.2972(29°2-1) points, on each of which a subgroup of the monodromy group
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acts transitively., As Ay must overlap both A2 and B2, this proves that the
monodromy group acts transitively on X;W(p). If g=23, this argument has to
be modified slightly. Taking g=3, at=03=y=0 in example (5.7), we see that
X_1(p) is divided in fifteen subsets, fourteen of them consisting of four
points and one of eight, on each of which a subgroup of the monodromy group
acts transitively; since in this case Aq¢ consists of 30 points and By of ©,
one of these must overlap both A4 and Bq. This proves that the monodromy
group acts transitively on X;W(p) for g2>3; the same argument also works
for X__W(p). The proof of (6.3) is thus complete.

7. Natural divisor classes on Sg. Mumford (cf. [6], [4]) has defined a
Picard group Pic(Mg) for the moduli stack of genus g stable curves. Its

elements are isomorphism classes of line bundles on the moduli stack. Such
a line bundle is the datum, for every algebraic family h:X— 3> of stable
curves of genus ¢, of an algebraic line bundle Ly (often written Ls) on 3,
and, for every cartesian diagram of algebraic families of stable curves

X ——— Y
Ln L
5 —5—T

of an isomorphism between £*(L1) and Lg. This isomorphism is required to

be "natural”, in a precise technical sense; the reader is referred to [&6], [4],
or [2] for details. Line bundles on l\_/lg give rise, by pullback, to line bundles

on the moduli stack; this yields a homomorphism from the ordinary Picard
group of l\_/lg to Dic(ﬁtg). The homomorphism is known to have finite

cokernel; moreover, for g>2, it is injective and Dic(ﬁtg) is a free abelian
group. The operation in Pic(Mg) is normally written additively.
I'f we replace, in the definition of Dic(f_rtg), the words "family of stable

curves” with "family of spin curves” we get the definition of a Picard group
of the "moduli stack of spin curves”, which we shall denote by Dic(f’g); if

we 1imit ourselves to even or odd spin curves, we get groups Dic(?é) and
Pic(¥4). Clearly, Pic(3q) is the direct sum of Pic(Sg) and Pic(§4): given a
class o in Pic(Sy), we will denote by o and o~ its restrictions to $g and
to §4, 50 that w=a"+a". Forgetting the spin structure and passing to the
stable model yields a homomorphism

X Pic(ilg) —— Pic(T ).

M. Cornalba, Moduli of curves and theta-characteristics, january 1989 - 25



we shall see later that ™ is injective for g»2; for brevity, if « is a class
in Dic(ﬂg), we shall normally use the letter o« also to denote ¥ ™(c).

The prototypical classes in Dic(ﬂg) are the Hodge class A and the
boundary classes &, 1=0, - ,[g/2] (cf. [2]): one knows that they form an
integral basis of PictMy) for g>2, and that they generate it in every case
[1]. We recall that, given a family of stable curves h:X — 5, the line bundle
giving rise to a is det(h,wnp); since the first direct image sheaf Rwh*ooh s
canonically trivial, this can also be written dlwp), which stands for the
"determinant line bundle” of hwp, as defined by Knudsen and Mumford [3]. If
h is a family of spin curves, we can use the same procedure to define
another natural line bundle My by setting

Mn = di(Th) .

There is one subtle point concerning the naturality of Mp. Given a cartesian
diagram

X —My
In Lk
5 —5—T

of families of spin curves, the isomorphism between Tp and m™(Tg) is

defined only up to sign, as we observed in section 2, so that there seems to
be a sign ambiguity in the isomorphism between My and £*(My). However,

since the fiber of My over ses 1S
det(HO(Tp|p-1(g) @ det(H (Tnfp-1) ",

and HO(Ch|h—1(5)) and H1(Ch|h_1(8)) have the same dimension, all ambiguities
cancel. The class in Pic(3q) determined by {Mp} will be denoted by the

letter M.
In addition to M, there are other natural classes in Dic(?Q), one for

each component of the boundary 95¢=54-54. These components have already

been implicitly determined in examples (6.1) and (6.2). When ¢ is odd there
are, altogether, 4. ([g/2]+1) components, half of them, Ay, B,
i=0,--,[g/2], contained in Sg, and half of them, A{, Bi, i=0, -, [g/2],
contained in Sg‘. When ¢ is even, the situation is the same except that By is
defined only for i<g/2, so the components of the boundary number
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4-(g/2+1)-1. We shall describe the components of 95 by describing their
general members.

- A{,1>0:two smooth components Cy and Co of genera i and g-1 joined at
points peCy and qel2 by a IF”, with even theta-characteristics on Cy
and Co.

- B{,i>0: as above, but with odd theta-characteristics on Cq and Co.

- Ay, 1>0:as above, but with an even theta-characteristic on Cq and an odd
one on Co.

- By, i>0:as above, but with an odd theta-characteristic on Cq and an even
one on Co.

- Ag:an irreducible curve of genus g with only one node, with an even spin
structure.

- Ag: as apove, but with an odd spin structure.

- Bg: an irreducible curve of genus g with only one node, blown up at the
node, with an even spin structure.

- Bg:as above, but with an odd spin structure.

That these subvarieties of Sg are irreducible follows from Lemma (6.3). The
corresponding divisor classes in Pic(3q) will be denoted o , oi, 31, @i ; the
class (3q,o Is defined to be zero. These classes are related to the boundary
classes in PictMy) by the relations:

&y =2(oti+3y), >0,
o =X+ 230,

This seems to be a good point to show that the homomorphism
X Pic(Mg) —— Pic(Tg)

is injective for g>2, as already announced. One way of showing that the
classes A, 00, -+,9[g/2], Which generate Dic(ﬁtg), are independent, is to
construct families of stable curves h:x — 5>, with 5 a smooth complete
curve, such that the vectors (degn(i),degn(dg), ) are independent, where
degn(L) stands for the degree of the line bundle Ly (cf. [1], for instance).
Now, after a finite base change and blowing up suitable nodes, we can put on
h:X— 3> a spin structure; since the effect of a finite base change on the
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vector (degn(h),degn(dg), ) is to multiply all entries by the degree of the
base change itself, the same argument shows that A, o0,  ,9[g/2] are

independent in D1C(§g) as well. 2ince we may limit ourselves to even, or
odd, spin structures throughout, this shows that, in fact, Dic(ﬁtg) also
injects in Pic(§4) and Pic(Fq).

We can actually do better, and show that A", the o4, and the @3f (resp.,
A, the o, and the (3y) are independent. Here is a sketch of the argument for
the even case, the one for the odd case being no different. Suppose there is a
relation

(7.1) 0= 27" +> ajof+5 biBf.

Given an integer i such that 0<i<[g/2], pick two smooth curves T and S of
genera 1 and ¢g-1, and consider the family of stable curves h:X— > whose
fiber over pes is the union of > and T with the point p identified to a
fixed point g of T. For this family the degrees of the generators of Pic(flg)

are as follows [2]:

degn(dj) =2-2(g-1)= 0 , degn(r)=degplo) =0 for j=1.

If ¥ stands for the blow-up of X along the locus of nodes in the fibers, and
h for its projection to S, then we can make h: X — S into a family of spin
curves by putting an even theta-characteristic, or an odd one, on both 5 and
T.On these families the degrees of A", of the «f, and of the (3{ all vanish,
with the exception of degp(ei) for the first family, and of degp(B{) for the
second one. It follows that all the coefficients in (7.1) vanish, except
possibly for £, ag, and bo. To handle these, one can proceed in essentially
the same way, with a different family of stable curves, for example with
the one obtained from a smooth genus g-1 curve C by identifying a variable
point p of C with a fixed one [2] After a suitable base change and blow-up,
one obtains a family of spin curves all Iying in Ag, or, depending on choices,
in Bp. Calculating degrees shows that there is a rational constant kK such
that

P =2kanp=Kkhbo.

In conclusion, (7.1) is a relation between » and dg. As we have observed,
its coefficients must vanish. We have proved most of the following result.
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(7.2) Proposition. /¥ g>2 is odd, the classes M7, M, o, o, Bi, B,
i=0, ,(g-1)/2, are independent. IT g>2 is even, the same is true of the
classes W', K7, of, o, Bf, i=0, - ,9/2,and (i, i=0,-,9/2-1. The
rollowing relations hald in Pic(¥g):

1) do=0p+2 B0,

1) &y=2(oti+(3y), 1>0.

The following holds in Pic(3 )@ Q:
1) olg= 4 A+8 H .

Obviously, it suffices to prove iii). We begin by showing that, for any family
h:Xx—5 of spin curves, one has

(7.3) Crlotop) = 4-CrlAp)+8-C1(Hp)

in AWS)@@; for simplicity, we shall drop the suffix h throughout. We set
§=w®§‘2, and notice that

ho (C1(E)-c (1)) = > (Crlaeid+ Byl +C(Bo),
i»0
N (C2(8)) = =2.(5 (Crloe)+C1(B i)+ C1(Bo)) = Cilocg) - Cr(d),
i»0
he(cq(€)-cilw)) =0,

since h is a 1. ¢ 1. morphism, the Riemann-Roch theorem holds for it in

Grothendieck's form. If we apply it to ¢, compare terms of degree one, and
use the fact that h*(c%(w)ﬁ 12.c1(N)-cq(&) (cf. [6]D, we find that

8-Cr(p) = 4n (cT (D) -4 (ci(D-crlw)) +8-ci(n)

=2-h (Cc1(€)cq(T)) -2-h (cr(w) (L)) + 8-cr(n)
-2 h(C1(8)c1 () -h(cF(w)) + 8.ci(N)

—Cc1(&)+cqloig) - 12 cr(n)+cq(&)+ 8.Cq(A)

cilotg) —4-cq(h)

as desired. Now that (7.3) has been proved, we are essentially done. There
are several different ways to conclude: we choose a lowbrow approach. Take
as o the moduli space of smooth spin curves together with a lTevel n
structure, for sufficiently high n, and as h:X— 35 the universal family of
spin curves on 3. Then 5 is smooth, so (7.3) says that

Con =4 ARt 8 Mp.
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>ince 5 1s a finite covering of 5g, this in turn says that
(7.4) AnN+8-H-og= > (rfog +s{B{+riai+siBi),

where the rf and the Si* are rational numbers. If we "evaluate" (7.4) on the

families of spin curves constructed during the proof of the independence of
the boundary classes in Dic(f’g), and use (7.3), we find, for every 1,

equalities
0 =ridegla/) , 0=s/deg@;),

so all the rf and all the Sf vanish, since the degrees appearing in the above
equalities are non-zero. The proof of Proposition (7.2) is now complete.

(7.5) Remark. wWith more work, one can actually show that part i) of (7.2)
holds in Dic@g), and not just modulo torsion.

(7.6) Remark. One interesting consequence of part iii) of (7.2) is that
D1C(§g), the Picard group of the moduli stack of smooth spin curves of genus

g, contains an element of order 4, in contrast with what happens for
Pic(Mg), which is infinite cyclic. In fact, iii) says that h-(4A+8 M -op) 15
trivial, for some positive integer h, so h-(4-x+8-p) is trivial on §q. Let K
be the least positive integer such that k-(h+2 ) is trivial on §4. Then
kK-(h+2 M) is a linear combination, with integral coefficients, of boundary
classes. Since these classes have been shown to be independent, and iii)
holds, kK must be divisible by 4. The same argument shows, more precisely,
that both Pic(5§) and Pic($4) contain elements of order 4. If we take into
account Remark (7.5), we see that the restriction to §4 of A+2.p itself has

order 4.

It would be of interest to completely determine the structure of
Pic(¥¢). For g>2, the simplest answer consistent with what we already

know would be that it is the free abelian group generated by the classes
KO AN
o, o, =1, (g-1)/2;
Bi,Bi, =0, -, (g=-1)/2

if ¢ 1s odd, and by the classes
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KO T AT AT
of oy, =100, 9/2;
Gi,1=0,-,9/2; B7,1=0, -, g/2-1

if g iseven. If this were the case, then Pic(§g) (resp., Pic(¥4)) would be

the direct sum of an infinite cyclic group generated by M™ (resp., by M 7) and
of a cyclic group of order four generated by A7+ 2 1™ (resp, by A~ +2-1 7).
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