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Geometria Algebrica. - A remark on the Picard group of spin moduli space.
Nota (*) del Corrisp. Maurizio Cornalba.

Abstract. - We describe a number of classes in the Picard group of spin moduli space and determine the
relations they satisfy; as an application, we show that the Picard group in question contains 4-torsion elements.
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Riassunto. - Una osservazione sul gruppo di Picard dello spazio dei moduli delle curve con struttura di
spin. Si descrivono varie classi nel gruppo di Picard dello spazio dei moduli delle curve con struttura di spin e si
determinano le relazioni che esse soddisfano; come applicazione, si mostra che il gruppo di Picard in questione
contiene elementi di ordine 4.

1. Introduction

Spin moduli space (in genus g) is the space parametrizing all couples

(smooth genus g algebraic curve C, theta-characteristic on C);

it has a natural structure of algebraic variety and will be denoted Sg. A well-behaved
compactification of Sg was introduced in [1]. In the same paper several natural classes in
the Picard group of this compactification (or rather of the corresponding moduli stack)
were described. It is of course of interest to determine whether these classes generate the
Picard group in question and what relations they satisfy. The answer to the first problem
is still unknown. The second problem is easier, and we can give a complete answer to it.
In fact, all relations are already described in [1], but the most remarkable among them
is stated there without proof. The main purpose of this note is to provide the missing
proof; as a byproduct, we describe new natural classes and determine their relation to the
ones defined in [1]. We conclude by showing that the Picard group of spin moduli space
contains 4-torsion. We work over the complex numbers throughout.

2. Spin curves

In this section we collect, without proof, those facts about spin moduli space and its
compactification that will be relevant for our purposes, referring to [1] for details.

A spin curve of genus g is the datum of a semistable genus g curve X, plus an invertible
sheaf ζX of degree g−1 on X and a homomorphism of invertible sheaves αX : ζX

⊗2 → ωX

such that:
i) If we call exceptional those smooth rational components of X that contain only two

singular points of X, then no two distinct exceptional components of X meet.
ii) The restriction of ζX to any exceptional component of X has degree 1.

iii) αX is not zero at a general point of every non-exceptional component of X.
Notice that the definition forces αX to vanish identically on all exceptional components

of X and to be an isomorphism elsewhere. The datum of a ζX and an αX satisfying ii)
and iii) is called a spin structure on X. Clearly, a spin curve such that X is smooth
amounts to the datum of X plus a choice of theta-characteristic on it. A family of spin
curves consists of a flat family of semistable curves f : X → B, plus an invertible sheaf ζf

on X and a homomorphism αf : ζf
⊗2 → ωf such that the restriction of these data to any
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fiber of f gives rise to a spin curve; here, and in the sequel, we write ωf for the relative
dualizing sheaf ωX/B . Given a family of spin curves as above, one sets Ef = ωf⊗ζ−2

f . Very
roughly speaking, Ef ’is’ O(E), where E stands for the divisor swept by the exceptional
components in the fibers of f (when this is a divisor). Let k : Y → B be another family of
spin curves: an isomorphism between f : X → B and k : Y → B consists of isomorphisms

h : X → Y γ : h∗(ζk) → ζf

such that f = k ◦ h and γ is compatible with the natural isomorphism between h∗(ωk)
and ωf . Notice that this differs slightly from the notion of isomorphism used in [1]; at the
end of this section and at the beginning of the next we shall explain how this affects the
results of [1].

The set of isomorphism classes of spin curves of genus g is denoted Sg; it carries
a natural structure of algebraic variety which makes it a coarse moduli space for spin
curves, and it can be shown to be projective. One defines the parity of a spin curve X to
be the parity of h0(X, ζX); in the smooth case, this reduces to the notion of parity of a
theta-characteristic. As in the smooth case, parity is a deformation invariant, so Sg is the
disjoint union of two connected components S

ev

g and S
odd

g consisting, respectively, of even
and odd spin curves.

The boundary ∂Sg = Sg − Sg of spin moduli space is a divisor made up of irre-
ducible components A ev

i , A odd
i , B ev

i , i = 0, . . . , [ g
2 ] and B odd

i , i = 0, . . . , [ g−1
2 ]. The general

members of these components are as follows:

- For A ev
i (resp., B ev

i ), i > 0: two smooth components C1 and C2 of genera i and g− i,
joined at points p ∈ C1 and q ∈ C2 by a P1, with even (resp., odd) theta-characteristics
on C1 and C2 ’glued’ to O(1) on P1.

- For A odd
i (resp., B odd

i ), i > 0: as above, but with an even (resp., odd) theta-
characteristic on C1 and an odd (resp., even) one on C2.

- For A ev
0 (resp., A odd

0 ): an irreducible curve of genus g with one node, with an even
(resp., odd) spin structure.

- For B ev
0 (resp., B odd

0 ): an irreducible curve of genus g with one node, blown up at
the node, with an even (resp., odd) spin structure.

An isomorphism between families of spin curves f : X → B and k : Y → B was defined
in [1] to be an isomorphism of fibre spaces h : X → Y such that there exists an isomorphism
γ : h∗(ζk) → ζf compatible with h∗(ωk) ∼= ωf . This differs from the convention adopted in
the present paper in that the datum of γ is not included in the definition; notice however
that, as we observed in [1], given h, γ is determined up to sign on each connected component
of B. This change in definitions causes no essential modifications in the mathematics of [1],
although, of course, the wording of some results has to be modified. Naturally, the most
apparent change is in the structure of the automorphism group of a spin curve X. The
’new’ automorphism group is a central extension of the ’old’ one by a cyclic group of order
two, this being generated by the automorphism ’multiplication by -1 in ζX ’, which will
be denoted εX from now on. Accordingly, all the results in [1] concerning automorphisms
of a spin curve X are valid in our context, provided one interprets Aut0(X) to mean the
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group of those inessential automorphisms of the semistable curve underlying X which come
from automorphisms of X (an automorphism is said to be inessential if it restricts to the
identity on the complement of the exceptional components).

3. Natural divisor classes

We denote by Sg, S
ev

g , Sg, etc., the moduli stacks of genus g spin curves, even genus g spin
curves, smooth genus g spin curves, and so on. A line bundle on Sg is the datum of a line
bundle Lf on B for every family f : X → B of genus g spin curves and of an isomorphism
between h∗(Lk) and Lf for every cartesian diagram of families of spin curves

X −→ Y
f ↓

h
k ↓

B −→ T

These isomorphisms are required to satisfy a suitable cocycle condition (see [4], [5], or [6]
for details). The Picard group Pic(Sg) consists of all isomorphism classes of line bundles
on Sg. One similarly defines the notions of line bundle and Picard group for S ev

g , Sg,

and so on. Clearly, Pic(Sg) is the direct sum of Pic(S ev

g ) and Pic(S odd

g ); if η is a class in

Pic(Sg), we shall denote its Pic(S ev

g )- and Pic(S odd

g )-components by ηev and ηodd.
The discrepancy between the definition of isomorphism of spin curves adopted here

and the one adopted in [1] obviously affects Picard groups. More precisely, if L is a line
bundle on Sg and X is a spin curve, the automorphism εX acts on LX : the ’old’ Picard
group is precisely the subgroup of Pic(Sg) consisting of the classes of all the ε-invariant
line bundles L, that is, those such that the action of εX on LX is trivial for any X. For
us, this makes little difference, for all the divisor classes we work with are ε-invariant.

The most obvious classes in Pic(Sg) are the classes λ and δi, i = 0, . . . , [g/2], coming
by pullback from the classes with the same name in Pic(Mg) (cf. [4] or [5]). For the line
bundle L with class λ, one has that Lf = det f∗ωf = det Rf∗ωf for any family of spin
curves f : X → B, while the δi are associated to the boundary components of Mg. In [1]
we mimicked these constructions, defining classes α ev

i , α odd
i , β ev

i , and β odd
i , associated to

the boundary components A ev
i , A odd

i , B ev
i , and B odd

i of spin moduli space, and a class
µ corresponding to the line bundle M such that Mf = det Rf∗ζf for any family of spin
curves f : X → B. To simplify notation, we set β odd

g/2 = 0 when g is even. In [1] it is shown
that

(3.1) δ0 = α0 + 2β0 δi = 2(αi + βi), i > 0.

There is another construction which yields classes in the Picard group of Sg. Let
f : X → B be a family of noded curves, and let L, M be line bundles on X . In [2] (cf.
also [3]), Deligne shows that the line bundle 〈L,M〉 on B defined by

(3.2) 〈L, M〉 = det Rf∗(LM)⊗ (detRf∗L)−1 ⊗ (detRf∗M)−1 ⊗ detRf∗OX
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depends bilinearly on its two arguments, in the sense that there are natural isomorphisms

〈L1L2,M〉 ∼= 〈L1,M〉 ⊗ 〈L2,M〉,
〈L, M1M2〉 ∼= 〈L,M1〉 ⊗ 〈L, M2〉,

satisfying suitable compatibility conditions.
When B is a smooth curve, denoting by F a general fiber of f , by b the genus of B,

and by ( · ) the intersection pairing on X , the degree of 〈L, M〉 is:

deg〈L,M〉 = deg Rf∗(LM)− deg Rf∗L− deg Rf∗M + deg Rf∗OX
= χ(LM)− χ(LM |F )χ(OB)− χ(L) + χ(L|F )χ(OB)
− χ(M) + χ(M |F )χ(OB) + χ(OX )− χ(OF )χ(OB)

= χ(LM)− χ(L)− χ(M) + χ(OX )
= (L ·M).

Using (3.2), linearity, and the fact that, for any L, det Rf∗(L−1ωf ) ∼= detRf∗L, we
find that

〈L, ωf 〉 ⊗ 〈L,L〉−1 ∼= 〈L,L−1ωf 〉
∼= (detRf∗ωf )2 ⊗ (detRf∗L)−2.

This proves

(3.3) (detRf∗L)2 ∼= 〈L,L〉 ⊗ 〈L, ωf 〉−1 ⊗ (detRf∗ωf )2,

which can be viewed as a concrete version of the Grothendieck Riemann-Roch theorem for
f and L. On the other hand, multiplying together the isomorphisms

〈L,LM〉 ∼= detRf∗(L2M)⊗ (detRf∗L)−1 ⊗ (detRf∗(LM))−1 ⊗ det Rf∗ωf

〈L,L〉 ∼= 〈L,L−1〉−1 ∼= detRf∗L⊗ det Rf∗(L−1)⊗ (detRf∗ωf )−2

〈L, M〉 ∼= detRf∗(LM)⊗ (detRf∗L)−1 ⊗ (detRf∗M)−1 ⊗ detRf∗ωf

〈L, ωf 〉−1 ∼= 〈L−1, ωf 〉 ∼= detRf∗(L−1ωf )⊗ (detRf∗L
−1)−1

shows that

(3.4) detRf∗(L2M) ∼= 〈L, L〉2 ⊗ 〈L,M〉2 ⊗ 〈L, ωf 〉−1 ⊗ detRf∗M.

As f : X → B varies among all families of spin curves, the line bundles 〈ζf , ζf 〉 define
an ε-invariant line bundle on Sg. This gives rise to a class in Pic(Sg), which, by abuse
of language, we shall indicate by 〈ζ, ζ〉. Similarly, one can define classes 〈ω, ω〉, 〈ζ, E〉,
〈E , E〉, and so on. The relations among these classes and the classes introduced in [1] are
summarized in the following result, where we have set

δ =
∑
i≥0

δi ϑ = β0 +
∑
i>0

(αi + βi).
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(3.5) Proposition. The following relations hold in Pic(Sg):
i) 〈ω, E〉 = 0,
ii) 〈ζ, E〉 = ϑ,
iii) 〈E , E〉 = −2ϑ,
iv) 〈ζ, ζ〉 = 2λ− 2µ− ϑ,
v) 〈ζ, ω〉 = 4λ− 4µ− ϑ = −12µ− ϑ + α0,
vi) 〈ω, ω〉 = 12λ− δ = −24µ− δ + 3α0 = −24µ− 2ϑ + 2α0.

We begin by proving i) and ii). Let f : X → B be a family of spin curves. Then,
using the definition of Ef and duality we find that

〈ωf , Ef 〉 = detRf∗(ωfEf )⊗ (detRf∗ωf )−1 ⊗ (detRf∗Ef )−1 ⊗ det Rf∗OX
= detRf∗E−1

f ⊗ (detRf∗Ef )−1,

〈ζf , Ef 〉 = detRf∗(ζfEf )⊗ (detRf∗ζf )−1 ⊗ (detRf∗Ef )−1 ⊗ det Rf∗OX
= (det Rf∗Ef )−1 ⊗ detRf∗OX ,

so αf : ζ2
f → ωf yields canonical trivializations of 〈ωf , Ef 〉 and 〈ζf , Ef 〉 away from the

fibers of f that lie in A ev
i , A odd

i , i > 0, or in B ev
i , B odd

i , i ≥ 0. Thus, both 〈ω, E〉 and
〈ζ, E〉 are integral linear combinations of boundary classes other than α ev

0 and α odd
0 . To

compute the coefficients, it suffices to evaluate the degrees of 〈ωf , Ef 〉 and 〈ζf , Ef 〉 for
families f : X → B of spin curves such that B is a smooth curve and the general fiber
of f is smooth. For any i > 0 (resp., any i ≥ 0) denote by Ei (resp., Fi) the divisor
on X consisting of all exceptional components of type A ev

i or A odd
i (resp., B ev

i or B odd
i )

in the fibers of f . Notice that Ef = OX (
∑

Ei +
∑

Fi). Then, since ωf and ζf restrict,
respectively, to a trivial line bundle and a line bundle of degree one on each exceptional
component,

deg〈ωf , Ef 〉 = (ωf · Ef ) = 0,

deg〈ζf , Ef 〉 = (ζf · Ef ) =
∑
i>0

degf (αi) +
∑
i≥0

degf (βi) = degf ϑ.

This proves i) and ii); since E = ωζ−2, iii) follows from them by linearity. That 〈ω, ω〉 =
12λ− δ is due to Mumford [5]. As for iv), formula (3.3), applied to L = ζ, yields

〈ζ, ζ〉 = 〈ζ, ω〉+ 2µ− 2λ.

Since Eζ2 = ω, ii) and the bilinearity of 〈 , 〉 imply iv). Formula iv), in turn, implies the
following result, whose proof is the main goal of the present note.

(3.6) Theorem. α0 = 4λ + 8µ.

To see this, notice that

12λ− δ = 〈ω, ω〉 = 〈E , ω〉+ 2〈ζ, ω〉
= 2〈ζ, E〉+ 4〈ζ, ζ〉 = 2ϑ + 8λ− 8µ− 4ϑ.
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Noticing that it follows from (3.1) that

(3.7) δ = 2ϑ + α0,

this proves (3.6). The remaining parts of (3.5) follow by combining (3.6), (3.7), and parts
i), ii), iii), and iv) of (3.5) itself.

The construction of λ and µ can be generalized as follows. Fix integers n, m and, for
any family f : X → B of spin curves, set

Lf = det Rf∗(ζn
f Em

f ).

This defines a line bundle on Sg; we shall denote by µn,m the corresponding class in
Pic(Sg). Notice that µ1,0 = µ and that, by duality and because of the fact that ω = Eζ2,
µn,m equals µ2−n,1−m.

(3.8) Proposition. For any integers n and m, the following holds in Pic(Sg):

µn,m = (n2 − 2n)(λ− µ)− n2 − n + 2m2 − 2nm

2
ϑ + λ.

In view of (3.5), formula (3.4) makes it possible to calculate µn,m provided one knows
how to express µ0,0, µ1,0, µ0,1, and µ1,1 in terms of λ, µ, and ϑ. Now, µ0,0 is just λ, µ1,0

equals µ, while, using duality, (3.4), and (3.5), one gets

µ1,1 = µ1,0 = µ,

µ0,1 = µ2,0 = λ− ϑ.

The remaining computations are left to the reader.

All the classes we have defined belong to the subgroup G of Pic(Sg) generated by
the classes µev, µodd, λev, λodd, α ev

i , α odd
i , i = 1, . . . , [ g

2 ], β ev
i , i = 0, . . . , [ g

2 ], and β odd
i , i =

0, . . . , [ g−1
2 ]. These generators are independent, as follows from (3.6) and the independence

of the classes λev, λodd, α ev
i , α odd

i , β ev
i , and β odd

i , proved in [1]. Thus, so far as we know,
Pic(Sg) has no torsion. Remarkably, as was already observed in [1], Theorem (3.6) implies
instead that λ + 2µ maps to a 4-torsion class in Pic(Sg). More exactly, if we denote by %
the restriction map from Pic(Sg) to Pic(Sg), we have the following result.

(3.9) Proposition. The subgroup %(G) of Pic(Sg) is the direct sum of two infinite cyclic
groups generated by %(µev) and %(µodd) and of two cyclic groups of order four generated
by %(λev + 2µev) and %(λodd + 2µodd).

To prove this, notice that, since all boundary classes map to zero in Pic(Sg), %(G) is
generated by %(µev), %(µodd), %(λev + 2µev), and %(λodd + 2µodd). Moreover, (3.6) shows
that

4%(λev + 2µev) = 4%(λodd + 2µodd) = 0.
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Suppose there are integers h and k such that

h%(µev) + k%(λev + 2µev) = 0.

Then hµev + k(λev + 2µev) is a linear combination of even boundary classes. Using (3.6),
we find that

hµev + k(λev + 2µev) = 4l(λev + 2µev) + · · · ,

where the dots stand for a linear combination of even boundary classes different from α ev
0 .

It follows from the independence of µev, λev, α ev
i , i > 0, β ev

i , i ≥ 0, that h = 0 and 4 | k,
as desired. The argument for %(µodd) and %(λodd + 2µodd) is the same.
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