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Algebraic geometry. — The Picard group of the moduli stack of stable hyperelliptic
curves, by MAURIZIO CORNALBA.

ABSTRACT. — We compute the Picard group of the moduli stack of stable hyperelliptic curves of any genus,
exhibiting explicit and geometrically meaningful generators and relations.
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In a recent paper [1], Arsie and Vistoli have shown, as a byproduct of their study of moduli
of cyclic covers of projective spaces, that the Picard group of the moduli stackHg of
smooth hyperelliptic curves of genusg ≥ 2 is finite cyclic, and that its order is 8g + 4
for oddg, and 4g + 2 for eveng, over any field of characteristic not dividing 2g + 2. In
another recent paper [3], Gorchinskiy and Viviani have given a geometric construction of
generators for the Picard groups in question. On the other hand, it was shown in [2] that,
in characteristic zero, the identity

(1) (8g + 4)λ = gξirr + 2
b(g−1)/2c∑

i=1

(i + 1)(g − i)ξi + 4
bg/2c∑
j=1

j (g − j)δj

holds in Pic(Hg) ⊗ Q, where Hg is the closure ofHg inside the stackMg of
genusg stable curves. In the formula,λ stands for the Hodge class, whileξirr, ξ1, . . . ,

ξb(g−1)/2c, δ1, . . . , δbg/2c, henceforth calledboundary classes, are the classes of the
irreducible components of the complement ofHg inHg (see below for precise definitions).
Moreover, it was proved in the same paper that the boundary classes are independent in
Pic(Hg)⊗Q. We wish to show that, combining these results of [2] with those of [1] and an
idea of [3], one gets almost immediately a complete description of Pic(Hg); in particular,
one finds that (1) is valid already in Pic(Hg), and not just modulo torsion. One also gets an
alternate—and to me somewhat simpler—proof of the result of Gorchinskiy and Viviani
mentioned above. We shall work overC; however, let us mention that (1) has been proved
in any characteristic by K. Yamaki [6] (cf. also [5]), whose methods could probably be
used to push everything through in all characteristics except those not covered by Arsie
and Vistoli’s results.

We begin by recalling some known facts about stable hyperelliptic curves and their
moduli. First of all,Hg is a smooth Deligne–Mumford stack of dimension 2g − 1. Its
boundary, that is, the complement inHg of the dense open substackHg, is a divisor with
normal crossings

Ξirr + Ξ1 + · · · + Ξb(g−1)/2c + ∆1 + · · · + ∆bg/2c
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(cf. [2]). Here the summands are the irreducible components of the boundary, which can
be described as follows. Any stable hyperelliptic curveC of genusg has a semistable
modelC′ which can be represented as an admissible double covering (cf. [4]) of a stable
(2g + 2)-pointed curve of arithmetic genus zero; letC′

→ Γ be this covering. Any
nodep of Γ divides it in two pieces, one containingj ≥ 2 marked points, and the other
2g + 2− j ≥ 2 marked points; we may assume thatj ≤ g + 1. If j = 2i + 1 is odd, there
is just one node ofC′ lying abovep, and we will say that it is anode of type∆i . Such a
node dividesC′ in two pieces of generai andg − i. We will say that the piece of genus
i is a tail of type∆i ; of course, wheni = g/2, the other piece is a tail of type∆i as well.
If insteadj = 2i + 2 is even, there are two nodes abovep, and we will say that they form
a pair of nodes of typeΞi . Such a pair dividesC′ in two pieces of generai andg − i − 1.
We will say that the piece of genusi is a tail of typeΞi ; the other piece is also a tail of
typeΞi wheni = (g − 1)/2.

One passes fromC′ to the stable modelC by contracting all tails of typeΞ0, which are
smooth rational components meeting the rest ofC′ in just two points. The resulting nodes
are said to beof typeΞirr . The remaining nodes ofC′ remain unchanged inC, and hence
can be classified as nodes of type∆i or pairs of nodes of typeΞi , i ≥ 1. Clearly, one can
speak of tails of type∆i or Ξi , i ≥ 1, also forC. We now define the divisorsΞirr , Ξi ,
and∆i , for i ≥ 1, as the loci of stable hyperelliptic curves possessing, respectively, a node
of typeΞirr , Ξi , or ∆i .

A stable hyperelliptic curveC comes with a hyperelliptic involution, which corre-
sponds to the sheet interchange in the coveringC′

→ Γ . Under the involution, the nodes
belonging to a pair of typeΞi get interchanged, while nodes of all other types stay fixed.

One definesξirr, ξi, δi as the classes in Pic(Hg) of the line bundlesO(Ξirr), O(Ξi),
O(∆i), respectively. The classesδi are the pullbacks toHg of the classes with the same
names in Pic(Mg). Instead, if we denote byδirr the pullback toHg of the class with the
same name in Pic(Mg) (often also calledδ0), then

δirr = ξirr + 2
b(g−1)/2c∑

i=1

ξi .

Let h be the order of the Hodge class in Pic(Hg). By the results of Arsie and Vistoli,
h divides 8g + 4. On the other hand, sincehλ restricts to the class of a trivial line
bundle onHg, it must be an integral linear combination of boundary classes. Since the
boundary classes are independent, this relation must be proportional to (1). Thus the integer
(8g + 4)/h divides bothg and 8g + 4 = 4(2g + 1). If g is odd, it is prime to 4(2g + 1),
so the only possibility is thath = 8g + 4. We conclude that Pic(Hg) is generated by the
Hodge class. Now, ifµ is an element of Pic(Hg), its restriction toHg must be of the form
nλ for some integern. Thusµ − nλ is an integral linear combination of boundary classes.
This means thatλ and the boundary classes generate Pic(Hg). Again by the independence
of the boundary classes, any relation between them andλ must be a multiple of (1).

Wheng is even,h divides 4g + 2, by [1]. Moreover, all the coefficients of (1) are even.
Arguing as in the odd genus case, we conclude that

(2) (4g + 2)λ =
g

2
ξirr +

g/2−1∑
i=1

(i + 1)(g − i)ξi + 2
g/2∑
j=1

j (g − j)δj .
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If, in addition,g is not divisible by 4, the coefficients of (2) are relatively prime. Reasoning
as in the odd genus case, one concludes that Pic(Hg) is generated by the Hodge class,
and that Pic(Hg) is generated byλ and by the boundary classes, subject to the single
relation (2).

We may summarize what has been proved in the following statement.

PROPOSITION1. Let g ≥ 2 be an integer. Wheng is not divisible by4, Pic(Hg) is
generated byλ and by the boundary classes. The relations between these classes are
generated by(1) wheng is odd, and by(2) wheng is even. Moreover,(2) is valid for
any eveng.

When g is divisible by 4, things are not as straightforward, since, as observed by
Gorchinskiy and Viviani, in this case Pic(Hg) is not generated by the Hodge class. The
argument used in the preceding cases just shows that the order of the Hodge class is either
2g + 1 (the correct answer) or 4g + 2, but does not enable one to pin it down. In order
to handle this case, following [3] we introduce another natural line bundle onHg, for any
g ≥ 2. For any familyα : X → S of stable hyperelliptic curves of genusg, we let
W = Wα be the divisor swept out by the Weierstrass points in the fibers, that is, the fixed
scheme of the hyperelliptic involution minus the nodes of type∆i in the fibers. Clearly,
away from nodes of typeΞirr , W is a Cartier divisor, etale overS. Actually, W is Cartier
everywhere. In fact, in suitable local analytic coordinates,X can be described near a node
of type Ξirr as the locus inC2

× S with equationxy = f , wheref is a function onS,
while the hyperelliptic involution corresponds to(x, y) 7→ (y, x); hence a local equation
for W is x − y. Now look at the line bundleωg+1

α (−(g − 1)W) on X, whereωα is the
relative dualizing sheaf, and observe that its restriction to any smooth fiber ofα is trivial.
To see this it suffices to consider the case whenS is a point, in which our claim is obviously
true, sinceωX = π∗ωP1(W) andO(W) = π∗(OP1(g + 1)), whereπ : X → P1 is the
hyperelliptic double covering.

To define a line bundleZ onHg we need to give, for each familyα : X → S as
above, a line bundleZα onS, natural under morphisms of families. Actually, it suffices to
do this only whenS is etale overHg. The idea would be to take asZα the direct image of

ω
g+1
α (−(g − 1)W). Unfortunately,ωg+1

α (−(g − 1)W) is not necessarily trivial on singular
fibers ofα, so in general this procedure does not yield a line bundle. To cure this, we twist
ω

g+1
α (−(g−1)W) by a suitable divisor whose support is contained in the union of singular

fibers. We letGi andEi be the divisors inX swept out, respectively, by tails of type∆i and
of typeΞi . We claim thatM = ω

g+1
α (−(g − 1)W −

∑
(2g − 4i)Gi −

∑
(g − 2i − 1)Ei)

is trivial on every fiber ofα, smooth or singular. In fact, letC be a fiber, and letC′
→ Γ

be the corresponding admissible double covering. To show that the restriction ofM to C is
trivial it suffices to show that this is true for its pullback toC′. On the other hand, it is clear
that this pullback comes from a line bundle onΓ ; thus it suffices to show thatM has degree
zero on every component ofC or, equivalently, on every tail of typeΞi or ∆i of C. This
is immediate. For instance, letT be a tail of typeΞi . Notice that the restriction ofO(Ei)

to T has degree−2, while the restriction ofωC has degree 2i. Therefore the restriction of
M to T has degree equal to 2i(g + 1) − (g − 1)(2i + 2) + 2(g − 2i − 1) = 0. Similar
considerations apply to the tails of type∆i . In conclusion,
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Zα = α∗(M)(3)

= α∗

(
ωg+1

α

(
−(g − 1)W −

∑
(2g − 4i)Gi −

∑
(g − 2i − 1)Ei

))
is a line bundle; as it behaves nicely under morphisms of families, this defines a line bundle
Z onHg. We defineζ ∈ Pic(Hg) to be the class ofZ. Wheng is odd,g+1,g−1, 2g−4i,
andg − 2i − 1 are all even, and replacing them with their halves in (3) produces another
line bundleZ ′ onHg, whose class we denote byζ ′. Clearly,ζ = 2ζ ′.

We now have at our disposal all the necessary ingredients to state our main result,
which is the following.

THEOREM 2. Letg ≥ 2 be an integer. Wheng is even,Pic(Hg) is generated byζ and by
the boundary classesξirr, ξ1, . . . , ξg/2−1, δ1, . . . , δg/2, subject to the single relation

(4) (4g + 2)ζ = ξirr + 2
g/2−1∑
i=1

(i + 1)(2i + 1)ξi + 4
g/2∑
j=1

j (2j + 1)δj .

Wheng is odd, Pic(Hg) is generated byζ ′ and by the boundary classesξirr, ξ1, . . . ,

ξ(g−1)/2, δ1, . . . , δ(g−1)/2, subject to the single relation

(5) (8g + 4)ζ ′
= ξirr + 2

(g−1)/2∑
i=1

(i + 1)(2i + 1)ξi + 4
(g−1)/2∑

j=1

j (2j + 1)δj .

In particular, Pic(Hg) is free abelian of rankg for anyg ≥ 2.

The essential step in establishing the theorem is the following result, whose proof will
be given later.

LEMMA 3. The following identity holds inPic(Hg) ⊗ Q:

(6) (4g + 2)ζ = ξirr + 2
b(g−1)/2c∑

i=1

(i + 1)(2i + 1)ξi + 4
bg/2c∑
j=1

j (2j + 1)δj .

Theorem 2 follows from the lemma by the same exact reasoning used to prove
Proposition 1; we will not repeat the argument here. An immediate consequence of
Theorem 2 and Proposition 1 is a formula forλ in terms of the boundary classes andζ

or ζ ′.

COROLLARY 4. In Pic(Hg),

λ =



g

2
ζ −

g/2−1∑
i=1

i(i + 1)

2
ξi −

g/2∑
j=1

j2δj wheng is even,

gζ ′
−

(g−1)/2∑
i=1

i(i + 1)

2
ξi −

(g−1)/2∑
j=1

j2δj wheng is odd.
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To prove the formulas, subtractg/2 times (4) from (2) forg even, andg times (5)
from (1) for g odd to obtain, respectively, 4g + 2 times the first identity, or 8g + 4
times the second one. Since Pic(Hg) has no torsion, the result follows. Another immediate
consequence of Theorem 2 and Corollary 4 is the following result of Gorchinskiy and
Viviani; to make contact with their notation just observe that they writeG to indicate our
line bundleZ wheng is even, and ourZ ′ wheng is odd.

COROLLARY 5 ([3]). Wheng is odd,λ = gζ ′ in Pic(Hg), andPic(Hg) is generated byζ ′.
Wheng is even,λ = (g/2)ζ in Pic(Hg), andPic(Hg) is generated byζ . If g is not divisible
by4, Pic(Hg) is generated byλ, while ifg is divisible by4, λ generates an index2 subgroup
of Pic(Hg).

Finally, wheng is divisible by 4, the greatest common divisor of the coefficients of
(1) is exactly 4. Since Pic(Hg) has no torsion, we obtain a valid identity if we divide all
coefficients of (1) by 4. This settles the question of the structure of the subgroup of Pic(Hg)

generated byλ and by the boundary classes.

PROPOSITION6. Let g ≥ 2 be an integer which is divisible by4. Thenλ and the
boundary classes generate an index2 subgroup ofPic(Hg), and the relations between
them are generated by

(2g + 1)λ =
g

4
ξirr +

g/2−1∑
i=1

(i + 1)(g − i)

2
ξi +

g/2∑
j=1

j (g − j)δj

At this point, all we have to do to finish up is prove Lemma 3.

PROOF OFLEMMA 3. The argument is essentially the one originally used to prove (1),
and we shall freely employ results from [2]. If we pickg families of stable hyperelliptic
curves, all with smooth and complete one-dimensional base, we can construct theg × g

matrix whose entries are the degrees of the various boundary classes on the given families.
It was shown in [2] that the families can be chosen in such a way that this matrix is non-
singular. This proves that the boundary classes are independent. It also reduces the task of
proving Lemma 3 to the one of evaluating, for each one of theg families, the degrees ofζ
and of the boundary classes, and showing that one gets an identity if, in (6), one replaces
each class with its degree. In other words, we must show that

(7) (4g+2) degζ = degξirr +2
b(g−1)/2c∑

i=1

(i +1)(2i +1) degξi +4
bg/2c∑
j=1

j (2j +1) degδj

for each one of the families.
The first family that one considers is constructed as follows. LetD be a general divisor

of type (2g + 2, 2) in Y = P1
× P1, and letf : Y → P1 be the projection to the second

factor. AsD is general, it is smooth, andf|D : D → P1 is a simple covering, in the sense
that above each point ofP1 there is at most one ramification point, and the ramification
index at this point is 2. SinceO(D) is a square, there is a double coveringη : X → Y

ramified atD. The surfaceX is smooth and, writingπ for the composition ofη andf ,
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π : X → P1 is a family of genusg stable hyperelliptic curves. All singular fibers of
π are of typeΞirr , and the degree ofξirr is equal to their number, that is, to the number
of ramification points off|D. This can be easily calculated using the Riemann–Hurwitz
formula forf|D and the genus formula forD ⊂ Y , and turns out to be 8g + 4. To prove (7)
in our case we must therefore show that degζ = 2. This is also easy to do. WriteW for
the ramification divisor ofη. Sinceωπ = η∗ωf (W) andη∗(D) = 2W , we have

ωg+1
π (−(g − 1)W) = η∗ω

g+1
f (2W) = η∗(ω

g+1
f (D)) = η∗(OP1×P1(0, 2)) = π∗(OP1(2)).

Henceπ∗(ω
g+1
π (−(g − 1)W)) = OP1(2), and degζ = 2, as desired.

The remainingg − 1 families are all obtained by the same general procedure. We start
with a family of stable(2g + 2)-pointed curves of genus zero, consisting of a family of
curvesf : Y → S plus sectionsD1, . . . , D2g+2, and we setD =

∑
Di . We assume that

S is a smooth complete curve, that the general fiber off is smooth, and thatO(D) is a
square. We letη : X → Y be the double covering branched alongD, write R for the
ramification divisor ofη, and setπ = f ◦ η. Thenπ : X → S is a family of semistable
hyperelliptic curves of genusg, and to obtain a family of stable hyperelliptic curves we
pass to its stable modelπ ′ : X′

→ S. In practice, as all the degrees we need to consider
are readily computed onπ : X → S, we will work mostly with this family, rather than
with π ′ : X′

→ S. The degrees of the boundary classes have been computed in [2]; we do
not need to know them individually, but just that, as a consequence of Lemma (4.8) and
formula (4.10) in [2], they are tied to the self-intersection ofD by the relation

(2g + 1)(D · D) = − 2g degξirr −

∑
i>0

(2i + 2)(2g − 2i) degξi(8)

− 2
∑
i>0

(2i + 1)(2g − 2i + 1) degδi .

Next, we compute the degree ofζ on the familyπ ′ : X′
→ S, that is, deg(Zπ ′). The line

bundleZπ ′ is the pushforward of the line bundle onX

L = ωg+1
π

(
−(g − 1)R −

∑
(2g − 4i)Gi −

∑
(g − 2i − 1)Ei

)
whereEi , 0 ≤ i ≤ b(g − 1)/2c, is the sum of all tails of typeΞi in the fibers ofπ , each
counted with the appropriate multiplicity, andGi is the sum of all tails of type∆i , also
counted with the appropriate multiplicity. By this we mean the following. Letp be a node
in a singular fiber ofπ ; complex analytically,X is of the formxy = tm nearp, wheret is
a local parameter onS. Eitherp is a node of type∆i , or it belongs to a pair of typeΞi ; let
T be the corresponding tail. ThenT appears with multiplicitym in Gi or in Ei . Notice that
the contribution of nodep to the degree ofδi , or the contribution to the degree ofξi , i ≥ 1,
of the pair of nodes to whichp belongs, ism; instead, wheni = 0, we get a contribution
of 2m to the degree ofξirr . Notice also that the intersection number ofR with T is 2i + 1
if p is of type∆i , and 2i + 2 if p belongs to a pair of typeΞi . The appearance of tails of
typeΞ0 in the definition ofL is due to the fact that the pullback toX of the Weierstrass
divisorWπ ′ in X′ is R + E0. We also observe that(D · D) = −(ωf · D), asD is a disjoint
union of sections. In view of these remarks, and since the degree ofZπ ′ = π∗(L) is equal
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to the intersection number ofL with a section ofπ , we have

(2g + 2) degζ = (L · R)

= (ω
g+1
f · D) + 2(R · R) − (g − 1)(E0 · R)

−

∑
(g − 2i − 1)(Ei · R) −

∑
(2g − 4i)(Gi · R)

= − g(D · D) − (g − 1) degξirr −

∑
(g − 2i − 1)(2i + 2) degξi

−

∑
(2g − 4i)(2i + 1) degδi .

Identity (7) follows by substituting for(D · D) the value given by (8). 2
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[3] S. GORCHINSKIY - F. VIVIANI , Families of hyperelliptic curves. math.AG/0511627.
[4] J. HARRIS - D. MUMFORD, The Kodaira dimension of the moduli space of curves.

Invent. Math. 67 (1982), 23–86.
[5] I. K AUSZ, A discriminant and an upper bound forω2 for hyperelliptic arithmetic surfaces.

Compos. Math. 115 (1999), 37–69.
[6] K. YAMAKI , Cornalba–Harris equality for semistable hyperelliptic curves in positive char-

acteristic. Asian J. Math. 8 (2004), 409–426.

Received 19 May 2006,
and in revised form 24 June 2006.

Dipartimento di Matematica “F. Casorati”
Universit̀a di Pavia

Via Ferrata 1, 27100 PAVIA , Italia
maurizio.cornalba@unipv.it


