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Introduction

iiven a compact Riemann surface C' of genus g, n points on it, and n pos-
itive real numbers (29 — 2+ n > 0), Strebel’s theory of quadratic differentials
[15] provides a canonical way of dissecting C' into n polygons and assigning
lengths to their sides. As Mumford first noticed, this can be used to give
a combinatorial description of the moduli space M, ,, of n-pointed smooth
curves of given genus g. If one looks at moduli spaces from this point of view,
one can construct combinatorial cycles in them (cf. [7], for instance). It is
then natural to ask how these may be related to the algebraic geometry of
moduli space. It was first conjectured by Witten that the combinatorial cycles
can be expressed in terms of Mumford-Morita-Miller classes. The first result
in this direction is due to Penner [13]; we will comment on his work at the end
of section 2. As we shall briefly explain now, and more extensively in scction
3, our approach to the question has its origin in the papers [16], [17], and [7]
by Witten and Kontsevich. The combinatorial cycles we are talking about
will be denoted by the symbols W,,. ., where m, = (mg,mi,m2,...) is an
infinite sequence of nonnegative integers, almost all zero, and n a positive in-
teger. On the moduli space M, ,, live particular cohomology classes of degree
two, denoted 10;, ¢ = 1,... ,n; by definition, v; is the Chern class of the line
bundle whose fiber at the point [C;z1,... ,z,] € Mg, is the cotangent space
to C' at z;. For the intersection numbers of the ¢; along the W, , one uses

the notation
T
1 d;
(Tti1 - Td, )m, — / H wi .
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These numbers arc best organized as coefficients of an infinite series

1

;:,(le %858 Tdn)"”xtdl oot 8

F(t(),t],... ,S(),.‘?l,...)=z

m;
i .

Kontsevich proves that exp F is an asymptotic expansion, as A ' goes to zero,
of the integral

fHN exp (—\/—1 ij:o (—%)j .s_,l—l%%;;ﬁ) exp (——% tr(XQA)) dX
[, exp (—3 tr(X2A)) dX

]

where H is the space of N x N Hermitian matrices, dX is a U(N)-invariant
measure, and A is a positive definite diagonal N x N matrix, linked to the
t variables by the substitution ¢; = —(2i — 1)!!'tr(A~2*"!). Using this result,
Di Francesco, Itzykson, and Zuber [3] showed that the derivatives of exp F
with respect to the s variables, evaluated at s; = 1, s; = 0 for ¢ # 1, can
be expressed as linear combinations of derivatives with respect to the ¢t vari-
ables, evaluated at the same point. This had been previously conjectured,
and proved in a few special cases, by Witten [17]. Our idea is that it is pre-
cisely this result which, when interpreted geometrically, should provide the
sought-for link between combinatorial and algebro-geometric classes. In fact,
this should be the case even on the Deligne-Mumford compactification _y.,,.
Why we believe this is explained in detail in section 3. We can show two
things. First of all, our idea works in complex codimension 1 (and we are
pretty sure it also works in codimension two). This is the content of section 4.
Secondly, in all the cases when we have been able to make the Di Francesco,
Itzykson, and Zuber correspondence explicit (the first 11 cases, according to
weight, as defined in section 3), this correspondence translates into identities

of the type
di d
v, =/ Xm., vt
/HH JE g . el

where the X, , are explicit polynomials in the algebro-geometric classes,
for any choice of d;, ... ,d,. In other words, as linear functionals on a large
subspace of the cohomology group of complementary degree, the classes X,,,_ ,,
behave as duals of the cycles W,,. ,. The codimension-one case is settled
precisely by showing that this subspace is as large as it can possibly be, as
soon as n > 1.

We are grateful to Edward Witten for useful conversations, and to Enrico
Bombieri and Giulia Galbiati for help with the computational aspects of the
present work. We would also like to thank the Institute for Advanced Study,
and in particular Enrico Bombieri and Phil Griffiths, for a very warm hospi-
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tality. Finally, our thanks go to the referee for his careful reading of the first
version of this paper and for a number of useful suggestions.

1. Mumford classes

As is customary, we denote by ﬂg,n the moduli space of stable n-pointed
genus g algebraic curves and by M, ,, the moduli space of smooth ones. We
shall consistently view these moduli spaces as orbifolds; likewise, morphisms
between moduli spaces will always be morphisms of orbifolds. We denote
by Ei the subspace of /\_Ag.n consisting of all stable curves with exactly k
singular points and their specializations; the codimension of ¥; is k. This
gives a stratification of ﬂg_n whose codimension one stratum %, is nothing
but the boundary dM, ,, = Hg_n \Mgin:

To describe the components of the ¥ it is convenient to proceed as follows.
By a graph we shall mean the datum T of two finite sets V' = Vr — the set
of vertices of T' — and L = Lj- — the set of half-edges of T' — plus a partition
of L indexed by V and a fixed-point-free involution of L; the orbits of the
involution are the edges of I'. If a half-edge [ belongs to the element of the
partition corresponding to a vertex v, we shall say that v is the endpoint of I;
the endpoints of an edge are the endpoints of its two half-edges. Notice that,
with these definitions, a graph I’ may well have non-trivial automorphisms
which act trivially on its vertices and edges. In fact, if there is an edge of I
whose half-edges have the same endpoint, the automorphism that interchanges
the two half-edges and leaves everything else fixed is of this sort. Now let
(C;zy,...,T,) be a stable n-pointed genus g curve, and denote by N the
normalization of C. The dual graph of C is the graph © whose vertices
are the connected components of N and whose half-edges are the points of
N mapping to nodes of C, two of them giving rise to an edge if they map
to the same node; the partition of L = Lg is the obvious one, that is, the
element of the partition labelled by a vertex v is the set of all points of L
belonging to the corresponding component of N. The graph © is connected
and comes equipped with two additional data. The first is the map p from
V = Ve to the nonnegative integers assigning to each vertex v the genus p,
of the corresponding component of N. The second is a partition of {1,... ,n}
indexed by V, that is, a map P : V — P({1,... ,n}) such that {1,...,n}
is the disjoint union of the P(v), for v € V. The partition in question is
defined as follows: P(v) is the set of all indices ¢ € {1,... ,n} such that the
i-th marked point belongs to the component corresponding to v. We shall
refer to the triple ' = (O, p, P) as the dual graph of (C;z1,...,%y,); when
necessary, we shall write pr and Pr to indicate p and P. We set h, = #P(v),
and denote by [, the valency of v, that is, the cardinality of the set L, of
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half-edges issuing from v. Clearly, the following hold:

g= Z py + A (D),

veV

n=Zhl,.

veV

(1.1)

Also, the stability of (C;zy,... ,x,) translates into
(1.2) P D B £

for every v € V. Tt is clear that any connected graph T satisfying (1.1) and
(1.2) arises as the dual graph of a stable n-pointed genus g curve. Now fix a
I' as above, and in addition choose, for each v € V, an ordering of L,. This
determines a morphism

(1.3) &y H Mpz.h._ni—l., = m_q_.n )

veV

which is defined as follows. A point in the domain is the assignment of an
(hy + 1,)-pointed curve (Cy;Ty1,... ,Tyn, 41,) of genus p, for each v € V.
The image point under &r is the stable n-pointed curve of genus g that one
obtains by identifying two marked points , 4, ; and @ n,+; whenever the
i-th element of L, and the j-th element of L,, are the two halves of an edge;
the marked points of this curve are the images of the points z,; for v € V
and 1 <4 < h,, with the ordering induced by P.

The morphism &r is a finite map onto an irreducible component of ¥,
where k is the number of edges of T. As the reader may casily verify, this
component does not depend on the choice of orderings of the L,. This is a
partial justification for omitting mention of these orderings in the notation
for the map &r. More importantly, our reason for introducing the morphisms
§ is to be able to describe (boundary) cohomology classes on M, ,, as push-
forwards of classes on H,‘,Gv Mpl”hv +1,» and it will turn out that the classes
we shall so obtain will always be independent of the choice of orderings of the
L,.

Let us denote by Ar the image of {r. The degree of &, as a map to Ar, is
precisely # Aut(I'). This has to be taken with a grain of salt, i.e., is true only
if one regards & as a morphism of orbifolds. For example, given the graph I’
in Figure la), the corresponding map

ér: M()_3 X MO.'& — Ar C JVZO
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FIGURE 1

is sct-theoretically one-to-one, since both source and target consist of one
point; on the other hand, while the unique point of Moy s x Mps has no
automorphisms, the automorphism group of its image in Ar has order twelve,
as the automorphism group of I'; thus the degree of & equals twelve in this
case.

It is clear that the components of X are precisely the Ar for which I" has k
edges. Moreover A and A are equal if and only if I and I'" are isomorphic.
We shall write §p to denote the (orbifold) fundamental class of Ar in the
rational cohomology of M, ..

To exemplify, let us look at the codimension 1 case. The possible dual
graphs are illustrated (with repetitions) in Figure 1b). The meaning of the
labelling should be fairly clear; for instance, in the graph I'y ; the function p
assigns the integers ¢ and g — q to the two vertices, as indicated, while the
partition Pr_, is just {I,CI}.

To abbreviate, we shall write &, &1, 8irr, 6¢.1, instead of &p, ., &r, ;, and
so on. In addition, we set 6 = 5_ ér, where I runs through all isomorphism
classes of codimension 1 dual graphs. For each of the dual graphs illustrated
in Figure 1b), the underlying graph has an order-two automorphism. This in-
duces an automorphism of I';,.» and an isomorphism between 'y ; and I'y_g 1
(which, incidentally, is an automorphism precisely when ¢ = g/2 and n = 0).
It follows that

(1‘4) fzrr* 1)+ Z &ql

n<u<9
1C{1,....,n}

Notice that the pushforwards in this formula are well defined since Poincaré
duality with rational coeflicients holds for all the moduli spaces involved. Next
we look at the morphism “forgetting the last marked point”

Tn41 - Mg.n+1 SEs Mg.n )

which we may also view as the universal curve Cg,, — Mg ,. We denote by
o1,...,0, the canonical sections of m,41, and by Ds,..., D, the divisors in
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Mg n+1 they define. A point of D; corresponds to a stable (n + 1)-pointed
genus g curve obtained by attaching at one point a P! to a curve C of genus
g, with the i-th and (n + 1)-st marked points on the P!, and the remaining
ones on C. More exactly, D; is just A, where I is the graph with one edge
and two vertices {v,w}, p, = 0, py = g, P(v) = {i,n + 1}, and P(w) =
{lseee 8= 1544150, ,n}. We let w., .. be the relative dualizing sheaf. We

set ' *
v =0 (Ui (wﬂ..+| )) )

K =1 (wrns (3 D1))
ki = 7rn+1*(1"i+1) .

Here, of course, Chern classes are taken to be in rational cohomology, and
Tn+1, s well defined since, as we already observed, Poincaré duality holds for
both the domain and the target of 7, ;. We shall call the classes &; Mumford
classes; in fact, for n = 0, their analogues in the intersection ring were first
introduced by Mumford in [12]. Notice that ko = 29 — 2 + n. Of course, a
possible alternative generalization of Mumford’s k’s to the case of n-pointed
curves would be the classes

R:i = 7T"+]‘(Cl (wﬂ'n+l )i+]) =

These are usually called Mumford-Morita-Miller classes; however, they are
not as nicely behaved, from a functorial point of view, as the x’s, as we shall
presently see. At any rate, the two are related by

(1.5) Ka=FRat+ Y Y2
i=1

The proof of this formula is based on the observation that, for any j, taking
residues along I; gives an isomorphism between the restriction of w,., ., (3 D;)
to D; and Op,. For brevity we set 7 = 7,41 and K = ¢;(w,). Then

o = (B4 D)) = r o) + 33 (T )yt

=0 i=1

(&) 1303 S P

=0 i=1

n

4 ,,r*(ka+l) i Z(_l)a—l ((L-Ii- 1) : sza
=0 ) i=1

n
=Ko+ Z Pe.
i=1
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Some of the good properties enjoyed by the x; but not by the &; are

(1.6) Ky is ample,
(]7) 7"11*(11){1“ = l‘l)?zn ]174 ¢ —H) 0h ’ll) h u[Zn 11"0" ;
(1.8) §r(ka) = ZPT:-('%),

veV

where &p is as in (1.3) and pr,, stands for the projection from [T, Mp, h, 41,
onto its v-th factor. That (1.6) holds is fairly well known; a short proof can
be found in [2]. In view of (1.5), formula (1.7) can also be written in the form

n—1

a1 An—1 1 a.,+1 ha1 | ﬂn 1~ aJ tan An—1
T (V1 200" ) = U 1"an+§ Wrt-- e Bk

As such, with the obvious changes in notation, it is part of formula (1) in [8];
incidentally, the other part is the so-called string equation

(1.9) Tua(¥7 - ¥niy) = ) Wit gyt

{j:a; >0}

The proof of formula (1) of [8] is essentially given by Witten in section 2b) of
[16]. We now come to (1.8). Consider the diagram

y L’ Cg,n

/| |

St él" —
Mo pitt, —— Mgn

veV

where

Y= H Cp,,.h"+ll, X H Mpu,)n"+l,,

veEV weV
uwFEv

and 7 is defined by glueing along sections in the manner prescribed by I'. We
also let }, and 7, be the restrictions of 7 and 7 t0 Cp, h,+1, X[ Tusty My ho-+1..-
The morphism 7, is endowed with h,, + [,, canonical sections Sy,..., Sk, 1,-
Now the point is that, by the very definition of dualizing sheaf, n}(K) =
c1(wr: (3° Si)). Property (1.8) follows.
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Another useful property of the classes & is that, on M, ,,, one has
(1.10) Ko =70 (Kg) + Ui

To prove this, look at the diagram

d— A —
Cg.n S Cg,n—l

ﬁn-ﬁ-lJ/ Pnl

e T sais
Mg.n E— -M_q.n—]

and denote by Di,...,D, (resp., Di,...,D,_,) the canonical sections of
@n+1 (resp., ¢n). We claim that

(1.11) Xt (w% (Z D;)) = s (Z U.L-) :

i<n

In fact, there is a natural homomorphism from A*(w,, (> D;})) to
Wen .1 (Y- D;); we wish to see that this is an isomorphism onto w,, ., (3., Di)-
The question is local in the orbifold sense. It is therefore sufficient to prove
(1.11) when universal curves over moduli are replaced by Kuranishi families.
To keep things simple we shall use the same notation in this new setup. There-
fore, from now on, ¢, = m, : C — B will stand for a Kuranishi family of stable
(n — 1)-pointed curves, and Dj,..., D] _, for its canonical sections. A suit-
able blow-up C’ of C x g C provides a Kuranishi family ¢, .1 : C' — C of stable
n-pointed curves, whose canonical sections we shall denote by Dy,...,D,.
The diagram we shall look at is

B P

Frn+1 Jv an(

AR ]
Observe that, to prove that the natural homomorphism from A*(w., (3 Dj))
to wy,., (3 D;) is an isomorphism onto w,, ,, (3;.,, D:), it suffices to do so
fiber by fiber. Now a fiber of ¢, is nothing but an (n — 1)-pointed curve
(Cs;zy,... ,xn—1). The inverse image via A of this fiber, which we denote by
X, can be described as follows. Set Y = C x C, DY = C x {z;} for i < n,
and let D!/ be the diagonal. Then X is the blow-up of Y at the points where
D! hits a node or one of the D, for i < n. We denote the exceptional curves
arising from points of this second type by Ei,... , E,_;. We also observe that
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the proper transform of each D! is just the intersection of D; with X. But
then

We,, ZDI |s< wv..)(zf<nl)i)|x(ZEi)-

On the other hand it is easy to prove (cf. [16]) that A\*(w,, ) = w,, ., (—A),
where A is the divisor in C’ defined as follows. Look at fibers of ¢, con-
taining a smooth rational component meeting the rest of the fiber at only one
point; we will refer to such a component as a “rational tail”. Then A is the
divisor swept out by the rational tails containing only two marked points, one
of which is the n-th point. Notice that the divisor cut out by A on X is Y E;.
Coupled with the formula above, this implies that

Wy, (ZD/))l X b w»«”uﬂ (Zi(nDi)'X 1

which is what we had to show. To prove (1.10) we now argue exactly as in the
proof of (1.5), but applying ¢,+1, to the (a + 1)-st self-intersection of both
sides of (1.11) instead of using the definition of x,.

Using (1.10) and the push-pull formula, we can apply formula (1.7) repeat-
edly to obtain

) 1,
(Ta_1%a)a{W0* - - 207 0t
/ +1
= M1, (W3 Yo Va3 Ka)
i 1
=Tn—1s (lb(f‘ UZ 11+ (ﬂ'n—l (Ka,.)'*"‘/‘)an ))

P Qg2

a1 :
=y Ppa (Kay_yKan + Kap_140a) s

an-3 1 0n-2+1 an-1+1 ;a,41
“wn—¥ l"'n 2 Qn 1 L’nn )

1,1
(7rn 2Tn lﬂ'n)*('wl
S y Ay —3 . - .
= (P1" - Vn"3 ) (Kan_2Kan—1Kay + Kay_sKap_1+an
g Kan lh-’ﬂn 2tan + K’anh"an 2+an—1 u 2H"71—2+ar|—l+un

and so on. In general, one finds formulas

i 1, Qg
(1‘12) (7Tk41"‘7l'n)~(¢ w;:\wz:—oll wn..+1) - /m _..wzk Rak”..ia,, 3
where R, ., 4, is a polynomial in the Mumford classes. A compact expres-

sion for Ry, . 3,, which we learned from Carel Faber, is

(1.13) el e S A

€S

where K, is defined as follows. Write the permutation ¢ as a product of v(o)
disjoint cycles, including 1-cycles: ¢ = a; ..., (,), where we think of &; as
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acting on the [-tuple (b;,---,b;). Denote by |a| the sum of the elements of a
cycle a. Then

Ko = ch‘l’nlﬁ'll s Kl"u(a)l -

Formula (1.12), together with the string equation, expresses the remarkable
fact that the intersection theory of the classes ¥; and k; on a fixed Hg,,,_ is
completely determined by the intersection theory of the v; alone on all the
ﬂg,,, with v > n, and conversely. A special case of this is Witten’s remark
[16] that knowing the intersection numbers of the x’s on M, is equivalent
to knowing the intersection numbers of the ¥’s on all the ﬂgin. Using the
“correct” classes x; makes all of this particularly transparent.

A final remark has to do with Wolpert’s formula [18] stating that, on M, o,

1

Ky
where W P is the Weil-Petersson Kahler form. It may be observed that this
carries over with no formal changes to M, ,, for any n. To prove the for-
mula (including the case considered by Wolpert), one may proceed as follows.
The “restriction phenomenon” (page 502 of Wolpert’s paper) amounts to the
statement that the analogue of (1.8) above holds for the class of the Weil-
Petersson Kihler form. Arguing by induction on the genus and the number
of marked points, we may then assume that the difference between x; and
702 [W P] restricts to zero on any component of the boundary of M, . One
then proves a general lemma to the effect that a degree-two cohomology class
with this property actually vanishes on MM, except in the cases when M g
is one-dimensional; these are the initial cases of the induction and are dealt
with by direct computation. The general lemma is proved, although not for-
mally stated, in [1], for n = 0; similar ideas can be used to deal with the case
when n > 0.

2. Combinatorial classes

Following Kontsevich [7], whose notation we shall adhere to throughout this
section, we consider connected ribbon graphs with metric and with valency
of each vertex greater than or equal to three such that the corresponding
noncompact surface has genus g and n punctures, numbered by {1,... ,n}.
We let Mg b be the space of equivalence classes of such graphs, endowed
with its natural orbifold structure. Recall that the map

n comb
Mgn xR} = M y

g.n
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which associates to a smooth n-punctured curve and an n-tuple of positive real
numbers the critical graph of the corresponding canonical Strebel quadratic
differential, is a homeomorphism of orbifolds. As Kontsevich has indicated,
the above map extends to a map of “orbispaces”

——comb

AA n
MQJI X R+ £ 'Mg.n ’

—‘(.'U’"'b . . . . . .
where M is a suitable partial compactification of M;‘_’,’{‘”. This map,

g.n
however, 1]s no longer one-to-one, as a certain amount of contraction takes
place at the boundary. More specifically, ﬂ;ﬂ’;"b is isomorphic to ﬂlgm xR%,
where .7\—/(—;_,, equals M, modulo the closure of the following equivalence
relation. Two stable n-pointed curves are considered equivalent if there is a
homeomorphism of pointed curves between them that is complex analytic on

all components containing at least one marked point. We let
it B —_—
a: Mgn—> M,

be the natural projection.

Now fix a sequence m, = (mg,m,...) of nonnegative integers almost all
of which are zero. We denote by M., ,, the space of equivalence classes of
connected numbered ribbon graphs with metric having n boundary compo-
nents, m; vertices of valency 2i + 1 for each 4, and no vertices of even valency.
The dimension of M,,,_, is nothing but the number of edges of such a graph,
and hence

: 1 ;
dimg M, n = 5 ZTH,’(2Z +1).

1

comb

o s where g is given

When mg = 0, the space M,,,. ,, naturally lies inside M
by the formula

1 ;
29 —2+n= 52771,-(21—1).
T
More generally, the Strebel construction always gives a map from M., n to
M, xR, even for mg # 0, so that in particular the classes 1; can be pulled

back to M,,,, . In all cases we have

dimg Mo, o =69 —6+3n—2_ mi(i—1) = dimg M =2 mi(i—1).
i i

On each component of M,,_ , one can put a natural orientation, as explained
on page 11 of [7]. When my = 0 it can be seen that, with this orientation,
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5 i . ——comb . .
M., . is a cycle with non-compact support in M . As such, it defines a
My, 34 g.n
class :
non—compact (g g¢0M
[Mm..n] € Hd.‘-n_'gk (Mg.n ’Q) ¢

where d = 69 — 6+ 2n and k = Y, m;(i — 1), hence an element of the dual of

ng n 2k(MZC.’,T,nb,Q) — H4 vzk(M;lmQ) :
This can also be viewed as an element W,,,. , € Hg_ok (_M_;‘n, Q).

It has been conjectured by Kontsevich (7] (and previou:qu, in a somewhat
more restricted form, by Witten) that the classes W,,,, , “can be expressed in
terms of the Mumford-Miller classes”. We next give a possible interpretation
of this sentence and a more precise form of the conjecture. The statement
is made a bit clumsy by the fact that it is not a priori clear whether the
classes W,  lift to classes in H, (ﬂg,n, @), as would happen, for instance,
if Poincaré duality held on m;_“. What is certainly true is that, given a
cohomology class z € H* (M, »,Q),

wH/ zUa*(p)
JMy

defines a linear functional on H d‘zk(ﬂ;.n, Q). What may be conjectured is
that this functional equals W, , for an z of the form

T = Prn.,n.(Rls K2,y - ) A ﬁm..n;

where P,,. , is a weighted-homogeneous polynomial in the Mumford classes
and 3,,. . is supported on the boundary of moduli. In what follows we shall
often take the liberty of writing W,,,, , = z to express this, when no confusion
seems likely. One may be more precise about P, , and 8n_n. Define the
level of a monomial [],., k% in the Mumford classes to be 3, ha. Then
P,., » should be of the form

(2.1) i ((in%;—:m ”?3'>

1

+ a linear combination of monomials of lower level .

As for 8. n, it should be a linear combination of classes of the form &r, (y),
where y is a monomial in the Mumford classes and in the pr}(v;), for i > hy,
where of course we have freely used the notation established in section 1. As
a special case, one should have

(2.2) Wio,m1,0,... 0,m;=1,0,..)n = 27(2j — 1)!'k;_; + boundary terms.
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In the next section we shall give evidence for these conjectures. In section 4
we shall prove (2.2) in the codimension 1 case for n > 1; more exactly, we
shall show that

(2.3) Wioima, 1, )n = 1281 =&,

where & is the usual class of the boundary. We shall also see that, for
n > 1, this formula includes as a special case the main result of Penner
[13], with the following caveat. In our notation, what Penner claims is that
W0.my.1....).n = 6F1 on the open moduli space Mg, while the correct formula
is Wig.m, 1....),n = 12k1. 1t should be said that Penner’s argument, which, by
the way, is entirely different from ours, is completely correct, except for two
minor mistakes in the interpretation of what has been proved. The first mis-
take is that, as we have noticed in section 1, the class of the Weil-Petersson
Kihler form is x; and not 1. The second mistake actually occurs in Theorem
A.2 of [14], where the explicit expression of the Weil-Petersson Kahler form
should be divided by two. In fact, if one looks at how this is obtained, one
sees that it is computed as the pull-back of the Weil-Petersson Kihler form
on Mg in—1,0 via the doubling map which associates to a genus g smooth
n-pointed curve C' the curve obtained by attaching at the punctures two iden-
tical copies of C'. But now, since one is doubling, one must also divide by
two, since the resulting curve carries the extra automorphism that exchanges
the two components. An advantage of our method over Penner’s is perhaps
that, in addition to giving a certain amount of control over the boundary, it
is not special to the codimension-one case but provides, at least in principle,
a mechanism for dealing with classes of higher codimension.

3. Geometrical consequences of a result
of Di Francesco, Itzykson, and Zuber

Following Witten [16] and Kontsevich [7], given a sequence of nonnegative
integers d = (d1, ... ,dy) and an infinite sequence m, = (mg, m1,ma,...) of
nonnegative integers, almost all zero, we set

n
o = bt ccrudm, = | [ RG,
Moniin j=1

where [R7] stands for the fundamental class with compact support of RY.
This integral is zero unless Y. d; = %dim M= ‘, >; mi(2i +1). Notice
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that, when my = 0, one can also write

n
<Td>nu = / HUIJ:{I b
W

Vinen i=1

and again this is zero unless

Zdi =3dimW,,, ,=39g—3+n— Z(z =ilme,
i

i

where 2g — 2 +n = (1/2) 3~, m;(2¢ — 1). We also set

.‘My." i—

(Td)gn = / 'd)g’ .
‘ 1

It is clear that (74)gn = (7g)m, for m. = (0,49 — 4 + 2n,0,0,...). The
symbol (74}, with no subscripts, stands for (74), » when the number g defined
by 3g — 3+ n = > d; is a nonnegative integer, and is set to zero otherwise.

Sometimes the abbreviated notation 757" 75 ... is used in place of

TOooTOTE s e T1 T2 oe TR et

e N N

np times n; times mna times
One then considers the formal power series

Ths

ty
F(t*as*) = Z <Td>m* n_*!s*m‘a

n.,m.
Z(tuy8.) = exp(F(te, s4))
where the following notational conventions are adopted. First of all,
t« = (Lo, t1,t2,...), S« = (S0,81,82,...)
are infinite sequences of indeterminates, and
M. = (mg,my,ma,...), n. = (np,n1,n9,...)

are infinite sequences of nonnegative integers, almost all zero. We have also
set

oo oo

AL ETTRD,) e

i=0 i=0
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and similarly for s*-. Finally, if n = ), n;, the sequence of nonnegative
integers d = (d,,... ,d,) is determined (up to their order, which is irrelevant)
by the requirement that n; equal the number of j’s such that ¢ = d;; in other
words, one could also have written ([];Z, 7" )., instead of (74)m..

Now let Hy be the space of N x N Hermitian matrices, and consider on
it the U(N)-invariant measure

dX = H dX,‘,' H dReXidemXij.

1<i<N 1<i<j<N
For any positive definite NV x N diagonal matrix A we also consider the measure
dup = ca v exp(—3 tr(X°A))dX

where ¢y v is the constant such that [dus = 1. It has been shown by
Kontsevich that, for any fixed s,, and with the substitution

t; = —(2i — 1)Ntr(A~21),

the series Z(t., s.) is an asymptotic expansion of the integral

= 1N (X
3:1 > —v-1 —= ) si——= | 4,
( ) /’;N CXp J=ZO( 2) S] 2j+1 A

as A~! goes to zero (notice the minus sign in front of the argument of the ex-
ponential, which is missing in the formula given in [7]). To simplify notations,
we set

(Ha= fdpa ,

HN
V-1tr X3
{fNa =/ fexp (—b“ dpy -
H
Let us now fix nonnegative integers msy, ms, ..., almost all equal to zero, and

set §. = (0,1,0,0,0,...). Tt follows from the definitions that

1 6 m; t:}'
(3.2) H = (0—91) F(t:,St) R R Z (Ti)(ﬂ.nn.rrvz,ms..n)m X

i>2 n.,m;

In other words, the coefficients of the above derivative of F' are just the inter-
section numbers

(33) / ,will s d)f,"‘ :
144

Ty T
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where we have written m. for (0, m;, mo, ms,...). If the conjecture formu-
lated in section 2 holds true, it should be possible to write these intersection
numbers under the form

(34) L (Pm..n(ﬁlv ”‘:'Za-“) +ﬁm..n)wih i '1/’7." )

JMyon
where P,,. , and (,,. , are as in that section. We contend that this re-
sult should be implicitly contained in a theorem, conjectured by Witten, and
proved by Di Francesco, Itzykson, and Zuber [3]. To explain this, the first step
is to observe that, by differentiating (3.1), we obtain asymptotic expansions

(-~ (@) 5) ) ~ () 0w

2

for any sequence v, = (vy,v1,...) of nonnegative integers such that v; = 0
for large enough i. Now the theorem of Di Francesco, Itzykson, and Zu-
ber (henceforth referred to as the DFIZ theorem) states that, given any
polynomial @ in the odd traces of X, there exists a differential polynomial

Ry =Ry (d—?o, a‘—;’l,...) such that

((@)a =RoZ(l.),

where Z(t.) stands for Z(t.,$x). Putting this together with the previous
remark shows that

a 5 (.9 a
H (63i> Z(t*’s*) |S.=§. 3 U"« (% E’ . ) Z(t*) )

i

where U, is a polynomial. In terms of F', this amounts to saying that
6 Vi Lo
11—'[ (0_91) F(t*’s*) |s*=.§. =U.,

where 5’,,_ is a polynomial in the partial derivatives of F'(t., s.) with respect
to the t variables, evaluated at s, = §.. The expression that Di Francesco,
Itzykson, and Zuber give for U, , and hence implicitly for U,,,, is quite com-
plicated. However, if we define the weight of a partial derivative

(2 e
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to be Y (2i+ 1)v;, and the weight of a product of partial derivatives to be the
sum of the weights of its factors, then what can be said is that

G\ 2
— ) F(1., 8«
(&)

Vi
H (2‘(217 - 1)!!%) F(t.) + terms of lower weight ,

i

S8y =8,

(3.5)

where F(t.) is defined to be equal to F(t,, 8,). In addition, only terms whose
weight is congruent to >7(2i + 1)»; modulo 3 appear in (3.5).

In the case when v, = (0,0.m2,m3,...) we have already explained how
the left-hand side of (3.5) is linked to the intersection theory of products of
classes v; with the W, ,; it remains to explain the geometric significance of
the right-hand side. Consider the series

() - s

Then it is easy to show that

g = <H T{"'Td> 4

In a certain sense one can say that differentiating F'(t.) with respect to the
L; variable p; times, for i = 0,1,..., corresponds to the insertion of [T 7/ in
the coefficients of F(t.). Now fix a positive mteger n,d = (dy,...,d,), and
m, = (0,m;,ma,...). Then W,, ., is a cycle in M g.n» for a well-determined
g. Setting v, = (0,0, m2,m3,...) and equating coeflicients in (3.5) one finds
that (74),,. is a linear combination, with rational coeflicients, of terms of the

form
Ai ik
i i

where {I},...,I;} is a partition of {1,...,n} and, for any subset I of
{1,...,n}, we set (r4,) = ([l;c;7a;)- Moreover, if we set p; = ZJ N 54
then 3 (2i + 1)p; is not greater than ). ,(2i + 1)m;, and congruent to it
modulo 3. For instance, the term coming from the highest-weight part of the
right-hand side of (3.5) is simply

[T @i-nmm <H T"‘-Td> 2

o gntd.m;

[] @@ - ™ /_ [] sz +-- ) TT s,

i>2 Mgn \a>1
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where we have used the formulas for the pushforwards of products of classes
; given in section 1. The lower-weight terms are considerably more messy.
In particular there is, a priori, no reason why it should be possible to write
each one of them under the form

d;
1
S My.n

where o is a suitable cohomology class. That this indeed happens, at least
in all the cases we have been able to compute, depends on some remarkable
cancellations, as we shall presently see. At any rate, we have that

d dn —
/ wll L e /
Wmoon M

which can be viewed as a first step in writing the intersection number (3.3)
in the form (3.4).

To illustrate the procedure we just described we shall work out three ex-
amples. The first one deals with the cycle Wi 1,.1.0.0,0....),n- This is the only
codimension-one cycle among the W,,_ , and corresponds to ribbon graphs
having at least one five-valent vertex. In this case (3.2) reads

1 ; ;
IT (226 — D)™ |-t |+,

m
gn \i>2

o}
a_&zF(t*"q*) |s.=é. T Z (Ti>(0.m|.l,0.0....

Na.,Mmy

tTlx

n,!’
On the other hand, the DFIZ theorem tells us, in this case, that

: 0 0 ( P ol
(36) 8—82Z(t*.8*) |s.=.§. = (120_t2 - 5(97%) d(t;)

Since Z = exp F, we then get, upon dividing by Z,

" - oOF 18°F 1 (OF 3
s |, Ly, = 125000~ 57 3 ()

Comparing coefficients, this amounts to

1
(Td)(().rn..l.O,O....) = 12(7'27'd>g.n4 1 Q(TUT(JT4>g—1.n+2

1
15 Z (TOTQ,>p.h+l (TOTdc,>g"'p-n—h+l )
Ic{l,...,n}
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where

T o= HTd, )

el

g is given by
5 ; & Lo e
Zdi =39—-3+n- 72- COdlm(W(O,ml.l.O.U..“ ).n) = 39 —3+n-1,
i=1

my by
my=4g— T+ 2n,

and h and p by

h=#I, 3p-3+h+1=) d;.

i€l

Using (1.7), this can be rewritten as

dy 2hin = oy dn
/ 1/)1 P _12/_ 1 "'wn’ wn-f-l
“’(0."'1,]&),0..“)‘7; /\Ag,nil

1 g
X 5 /_ Eirr‘( ;il wg")

My_1,n+2

1 * d

1 d
"'é E : e 677,[( 1 "'wn")

osp<g YMphi1 XMg_pn kil

rclisiin}

— 12/_ "'711!5?1 v g"
Mgon

ESo Z /M fpl (l)w

:4p<g
re i n}

or, in view of formula (1.4),

(3.7) / Pt i = /_ (1261 — )yt -+ - fdn
JWio,m;,1,0,0,...)

My.n

Now let us turn to the codimension 2 case. Among the W, , there are
exactly two codimension 2 classes, corresponding to m. = (0,m;,0,1,0,.. )
and to m. = (0,my,2,0,...). The first one corresponds to ribbon graphs with
at least one 7-valent vertex, the second one to ribbon graphs with at least two
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5-valent vertices. To make notations lighter, from now on we shall adopt the
following convention. Whenever identities between derivatives of Z or F will
be given, these will always be meant to hold for s, = 3. = (0,1,0,...), unless
otherwise specified. With this notation, the DFIZ theorem gives

(3.8)
LR o e
833 df,j at()atl 4 (l)t() :

(3.9)
Pz i VA oz &*z 8z 1947 0z
— — 840 — 24 S — 3.
O = ot2 Oc)tj Zatgf)tz ks dtyot, t3 ot} 3(‘)150

In terms of derivatives of F these translate into

OF OF oVF OF OF 50F
31 —=1 St L A
3:10) 033 O()tg 3&)(%1 oty Ot ¥ 40ty
82F OF\? 82F oF OF PF
_— _— = + 144 —_ — — 12—
6s§ B (652) Sl 7} 0f2 (d 2) 840(’%3 dté@tz

0l TP g IORR oy (DR OF. 8

dt?, dty Oty Otyots dty ) Oty OtyOty
OF OF 19'F O*FOF 38°F (OF\?
at—07+4w+?7+m—(y)

L L(OF\' 3 (PF\® _LoF
4 \ bty 4\ 812 Oty

Taking into account (3.6), the second of these yields

+ 24

O*F O OF PF OF 0°F
ety S 3 o BN 7, Lol i <
ds3 T ot3 e oty 128f38t2 Ay Aoty
0’ F oF  18'F &
(3.11) A . ol

Btodt, ~on o i dto + o2 ot
L&F (9F\' 1 (@PP\' _oF
o5 \ dty 2\ a3 aty’

As the reader may notice, the right-hand sides of (3.8) and (3.9) contain con-
siderably fewer terms than one would a priori expect, based on the general
statement of the DFIZ theorem in the form given by (3.5). Tn fact, 8*Z/dt}
is missing from (3.8), while 87Z/dt], 0°Z/0t0t3 and 3°Z/0t}0t, are not
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present in (3.9). In addition to this phenomenon, further unexpected can-
cellations occur when passing from derivatives of Z to derivatives of F. For
instance, (OF/0ty)* and (8F/dt2)? do not appear in (3.11). We shall see in a
moment that these remarkable phenomena have geometrical significance. In-
deed, in equating coefficients in the two sides of (3.10) and (3.11), it is precisely
these facts that make it possible to interpret the resulting identities as rela-
tions between intersection numbers on a specific moduli space Hg_n, rather
than relations involving intersection numbers on different moduli spaces.
Term by term, (3.10) translates into

(Td)(0.m1,0,1.,0,...) = 120{T37g) g n+1 — 6{T0T17d) g—1,n+2

= Z (Tle,)p,h+-1(Toncr)g—p.n—hH

1C{1,...,n}
5
2 g Z(‘Fu‘l'g)g—l.n.+1
= 120(7372) g.n+1 — 6(T0T1Ta) g—1.n+2

—6 ) (mi7a)pr1(T0Tde, Y g—pn—ht1
j o 1 DO 4

T 30(Tl><T0Ti)g—].n+l )

where 3g—3+n—2=>Y"d;, m; =4g—942n,h = #I,3p—-3+h+1=3 ., d;,
and we have used the fact that (r)) = 1/24. Proceeding exactly as in the
derivation of (3.7), we conclude that

(3.12) / ’lj)'ll‘ s '(/Jg“ = / (120/@2 + ﬂ) ’111 e 1/')5" 3
W(0,m,.0.1.0,...).n M

gn

where

= “6£iy-1'*(w11+1) =9 Z £p,l,,(¢h+l X 1)
(3.13) T

+ 3060, (Y1 x1).

The reader should be warned that 3 is not unambiguously defined, or, more
exactly, that (3.12) holds also for a different choice of boundary term 3. To
see this notice that, using (1.7), we can write

(tom17a)g—1,n42 = (2(g — 1) — 24+ 1+ 1){107g) g—1,n41
= 24(2g9 + n — 3) (11 ) {T0Td) g—1.n+1 -
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Since kg =29 +n—3 on M_q_l,nﬂ, this means that we could have chosen 3
to be given by

B=—14461p, (Y1 X ko) =6 > &1, (Yns1 x 1)
(313,) l;’(f.’i?“.’n)
+ 30810, (¥1 x 1).

This kind of ambiguity will be present in all the formulas for combinatorial
classes that we shall give; however, it will be confined to some of the boundary
terms.

Let us turn to formula (3.11). This gives

2(74) (0,m1,2,0,0....) = 144(7374) — 840(T374) — 12(137274)

—24 Z (ToTa, ){ToT2Ta,) + 24(T0T174)
IuJ={1,... ,n}

I
+24 Y (roma,)(miTa,) + Z(TSH)
IuJ={1,... n}
(3.14) + 3 (rdra)roma,)
IuJ={1,... ,;n}
+ Y (131a,)(roma, ) (7074, )
IUJUK={1,... n}

1 ’ y
b2 Y (e a,) ~ 3o,
TLJ.’:{] TR .n,}

We wish to see that this can be interpreted as an identity among intersection
numbers on ﬂg_,,,, where g, my, and the d; are related by > d; =3¢ —5+n
and m; = 4¢g — 10 + 2n. The left-hand side of (3.14) is twice the integral of
u')fl < eahdn over W0.m:.2.00....)m- As for the right-hand side, it is convenient
to examine each summand separately. The first two terms cause no trouble
for, using (1.12), they can be written as

144(127274) g 2 — 840(T3Ta) g nt1 = 144/ (n? - Kg)ﬁ)f‘ wﬁ
Mg n

— 840 Kot - - - qplin
Mg.n

=/ (14452 — 696k)Y% - - - hin .

Now look at the remaining terms.
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- Term 3.
(18Tems) = (TeT2Td) g—1,n+8 = /_
Mg_1nt2  j=1 Mg.n

- Term 4. Disregarding the coefficient, this is

D" (ro7a,Yant1(Tom2Td, Irks2
LJ={1.... .}

where

727

K1 wa = f_ §irr*("31)H'w§1‘-

h=#I, k=#J, > di=3¢-3+h+1, Y dj=3r—3+k+2.

iel jedJ

Since h + k = n and, as we observed above, Y d; = 3g — 5 + n, this gives

q+r =g. Hence

Y (roa,)mom2ma,) = HUJ’]/ w [T o

IUJ={1,... n} uJ= {1 .. n} Y Mant1 jer jed
= 3 f €a.1.( lxmﬂw
0<qg=g M q.n
IC{1,.”.,n}

- Term 5

n

(Tom174) = (ToT1Td)g—1n+2 = /_ Eirra(Wns2) [ [ ¥

Mgn TR

This is an expression which appeared also in the formula for W 1., 0.1,0,

As in that case, it could have been interpreted, alternatively, as

n

2 [ oo xmo) []

Mg.n =1

- Term 6. The relevant part is

Z (T07a, ) q.n+1{T17d, Jrkt1 s
IuJ={1,... ,n}
where ¢ + r = g, and thus it can be rewritten as

> / fquxwm)Hw

O<qg<g q n
TC{ X 5n)

sl e
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- Term 7. We have

(67a) = (T7a)g-2,n+a = /_

Mg r

£a.() [T o,
=1

where the graph A is depicted in Figure 2.
- Term 8. This is

Z (7'(:)374,)q.h+3(7'07'r_ij)r.k+1 )
TuJ={1,... ,n}

with ¢ + 7 = g — 1. Clearly it can also be written as
n
'Il,‘
Ef_ §(B.p.P)*(1) quj )
p.P Mg.n i=1

where the graph B is illustrated in Figure 2, and p (resp., P) runs through all
possible assignments of genera to the vertices of B subject to the condition
that their sum be equal to g — 1 (resp., all partitions of {1,... ,n} indexed by
the vertices of B).

- Term 9. This is

D (w7, amr2{ToTd, Irkr1(ToTay Vo1 5
TUWJUK={1,... ,n}

where g, 7, and s add to g. As in the preceding case, then, this term can also

be written 5
d;
ZL Eopp. () [T v,

p.P Y Mgn i=1

©.C e

FIGURE 2
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where the graph C is illustrated in Figure 2, and p (resp., P) runs through all
possible assignments of genera to the vertices of C' subject to the condition
that their sum be equal to g (resp., all partitions of {1,... ,n} indexed by the
vertices of C').

- Term 10. This is handled similarly to the two preceding ones. Consider the
graph D in Figure 2. Then

Y. (7a ) iTa,) Z/ E(L)pP),, 1)Hw

1UJ={1,... ,n} p.P

where p runs through all assignments of genera to the vertices of D adding to
g —1 and P through all partitions of {1,... ,n} indexed by the vertices of D.
- Term 11. The expression (7y7;) already appears in the formula for the class
W(0.m1,0,1,0.... ).n» @nd we have seen that it equals

24 /
M

What all the above computation suggests is that a reasonable candidate for
an expression of W, 20...),n in terms of the standard algebro-geometric
classes might be

n
10,(¢1 x 1) H

g.n

263 — 348K — 6€irr, (K1) — 12 Y &1, (1 X K1) + 12irr, (¥n+2)

0<g<yg
T L5e- s om
1 1
(3.15) + 12 Z §q']*(l X Pr+1) + g{A*(l) + 5 Zf(g‘_p.p)*(l)
0=q=g p.P
Lt
+2 zgé(c.p.m Ze(n,, P).(1) = 36619, (41 x 1),

P,

up to the ambiguity noticed in the analysis of term 5.

As we remarked after formula (3.11), due to a number of remarkable can-
cellations, in the expressions of the derivatives of I with respect to the s
variables in terms of derivatives with respect to the ¢ variables many deriva-
tives of F' that would a priori be allowed by the DFIZ theorem are not present.
For example, in codimension 2 the terms

oF\* oF .
8ty Ot ]
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among many others, are missing. This is wonderful, for otherwise our formulas
would have been ruined. In fact, when studying codimension 2 classes in genus
g, we would have gotten terms of the sort

(1074, Va1 b1 +1(T0Td;, D g ha+1(T0Td;, )gs.ha+1{T07d, Dqusha+1 5

(T?-Td,l )1y <T2'rd,2)r-2.h2+l )

respectively. Now it is easy to see that we must have ¢ + ¢ + q3 + ¢4 =
g+ 1=r; +ry. Thus it would have been impossible to write these terms as
intersection numbers on ﬂy,,,.

In the same vein, but with considerably more effort, we could have given
similar formulas for some classes W,,_ ,, of higher codimension, including in
particular all those of codimension 3. In the Appendix we have listed the
expressions of the derivatives of F' with respect to the s variables in terms
of those with respect to the ¢ variables that are needed to carry out these
computations, which are otherwise left to the reader.

The resulting identities are of the form

. fdi: ,di
(316) /n‘»m*.n le - /'v Xm..nHwi 3

Vig.n

where g is given by 49 — 4+ 2n = > m;(2i — 1) and X,,_, is a polynomial
in the Mumford classes and the boundary classes. The reader is invited to
check that this is indeed true, using the methods employed in this section. Of
course, the point is to verify that all the terms that one gets can be interpreted
as intersection numbers on ﬂg,n, and not in higher genus. The formulas one
finds, arranged by increasing codimension, look as follows:

- Codimension 1

X(0.m1.,1,0,...)n = 1261 + -
- Codimension 2
X(0,m1,0,1,0,. = 120K2 + -
Xt = 72”1 — 348k + -
- Codimension 3
X(0.m1,00,1,0,...),n = 1680K3 + -

X(0.m1,1,1,0....),n = 1440k k2 — 13680k3 + - - -
X(U m1.3,0,. = 288&',1 4176k k2 + 20736K3 + - - -
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- Codimension 4

X(0,m1,0,0,0,1,0,. yn = 30240k4 + - -
X(O my,1,0,1,0,. = 20160k k3 — 312480K4 + - - -
X(0,m1.02,0,...)n = 7200,«.2 — 159120K4 + -

- Codimension 5
X(0,m1,00,00,1,0.... ),n = 6652805 + -
- Codimension 6
X(0.m1,0,0,0,0,0.1,0,. = 17297280k¢ + -

The dots stand for boundary classes, which are well determined up to ambigu-
ities of the kinds previously described. This list is complete up to codimension
3 included.

The same remarkable cancellations that we observed for codimension-two
classes occur, to an even greater extent, in higher codimension. For instance,
the expression for & F/8s3 given in the Appendix involves 41 terms while, a
priori, up to 585 might have been expected from the statement of the DFIZ
theorem. Here in fact, as in most other cases, a bit more cancellation takes
place than the minimum necessary to enable us to translate the formula into
identities of the form (3.16).

4, The codimension-one case

Our main goal in this section is to complete the study of the codimension-
one class Wig m, 10....)n- FOr simplicity, this will be denoted simply by W
throughout the section. We shall prove the following

Proposition. When n > 2, for any class v € H®9~6+2" 2(M Q) one

has
/ / 12&1 — (S)
, g N

where « is the natural map from Mg, to M_,m.

In section 3 we have shown that the proposition holds when  is a product of
classes v;. Notice that both W and 12k; — é are invariant under the natural
action of the symmetric group S, on M, ,. Moreover, it is reasonable to
expect that W can be “lifted”, non-uniquely, to a homology class on M, g.n-
Proving this, however, requires a little argument that will be given later.
Granting this, the proposition is then a direct consequence of the following
lemma.
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Lemma. Let z € IIz(ﬂg,,”Q) be an S, -invariant class, with n > 2.

Suppose that
- e mtf e =
i 1=1

My.n

for all choices of dy, ... ,d,. Then x is a linear combination of classes Op.0-
Incidentally, it is obvious that the converse of the statement of the lemma
is true. Morcover, the 6,9 are precisely the classes of those components of
the boundary that are partially contracted by o. We now prove the lemma.
It follows from a well-known theorem of Harer [4] that the second coho-
mology group of ﬂg,n is generated by the classes ky,4,...,%, and by the
boundary classes 6, where I' runs through all isomorphism classes of dual
graphs having only one edge. We set 9 = )" ;. Given integers p and h,
with 0 < p < g and 0 < h < n, we denote by 6, the sum Y ér, where T
runs through all isomorphism classes of dual graphs of curves with exactly
two components meeting at one point, one of which has genus p and carries h
marked points. In terms of these, one may write the class of the boundary as

6= (5irr 2 Z 5p.h 3
(p.h)eA

where

A={(p,h):0<p<yg/2,0<h<n, 2<hifp=0,

4.1
() hsn—-2fp=g, h<n/2ifp=g/2}.

Clearly, any invariant class in the second cohomology group of M, ,, is a linear
combination of Ky, ¥, é;;., and the 6, . If g = 2 (resp., g = 1, resp., g = 0)
one can do without k1 (resp., K1 and ¥, resp., k1, ¥ and 6,,..). We then write

=0k +bY+clir+ Y Condpn,
(p.h)eA

wherea =0if g <2, b=0if g <1, and ¢ =0 if g = 0. We will first show
that a =b=c = 0. Set

n—2
' g id
Qs = H Yi wfz 1¥n s
i=1

where d = 3g — s — 2, and notice that, if s # 2 mod 3, then [§,,a; =0. In
fact, [ &, nc is a linear combination of terms of the form {(rom# ) (Torb T T4) OF
of the form (ry7{7,)(To7)74). But since a — (a+ 1) and a + s — (a + 2) arc
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not divisible by 3 (s # 2 mod 3), both (ry7{") and (77{7s) vanish. We now
wish to compute [ ka5, [as, and [ §;..a,. For this we are going to use
the following well-known formulae [16]:

(T()‘le o .Td"> = Z (le e Tdi—1 - .Td") ’
(42) d; =0

(Tle1 ...Td") — (2g—2+n)(le ---Td..>,

where 3g —3+n = ) d;. The first formula is just the string equation (1.9),
while the second is a special case of (1.7). Setting r = 2g — 2 we then have
(r+n)!

/mas =i Ay gy = T2 (T2TsTa)g,3

/'ﬂas = (n — 2)(re7 1y Ta) + (7 2o p1ma) + (7 e Taga)

oy | b '
- %(n — 2){(ToTsTa) g3 + “(t:l_—l)!l)'(rs“rd)g_z
e !
%<Ts75+l>g.2 ;
2/6"""""’" = (rim P rsta) = %I)!l)!(rﬁnm
S Ll

1) ({(Ts—2Ta)g—1,2 + 2(Ts—1Td—1)g-1,2 + (TsTd-2)g-1,2) -

To simplify these expressions we shall use the fundamental fact (7] that the
function Z(t.) = exp F(t.) satisfies the KAV equation. It is convenient to set

(T3g-2) ifg>1,
(@) =19, 3 :
(To)zl lfg=0,

) = (TsTd)gQ
ety o(g) ’

(TszTd)g,s

e = v(9)

Writing the KdV equation in Gel'fand-Dikil form one gets in particular (cf.
[16], page 251) that

1

w(9) = 5-p(g—1)

519 (9=1).

I
“12r+2)”
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It follows that

[ [ra = CE2 R g+ mUGan),

_/U’Ozb = 7'(+:1,_2) ) ©0(g) [(n—2)U(s,r)
+(r+2)T(s+1,7)+ (r+2)T(s,7)],
/ PRI, (+Z 2),1) 0(g)6(r + 2)2 [T(s — 2,7 — 2)
+2T(s —1,r—2)+T(s,7—2)] .

(43] =

To calculate T'(s,) and U (s, r) we use again the fact that Z satisfies the KAV
equation, but this time expressing this by saying that Z is annihilated by the
Virasoro operators Ly, for k > —1. The equations L_1Z = LyZ = 0 are
equivalent to (4.2). The Virasoro operator Ly is given, for k > 0, by

@k+31 8

L. = —
. 2 Otit1

+%Z(2k+2i+l)(2k+2i—1) (204 Dt g—
i—0 z+k

1] 1 62

3. (2r + (s + D=

r4s+l=k S

W= | =

+

Recalling that
1
F(t*) = Z E(Td‘ s -Td,,>td1 R 7 [

to say that LiZ = 0 translates into

n

(2k + 2d; + 1)!
(Tk+17a) = 2k+3 JZ:; (2dj—11)!! Tty v Tpihin 5T}
1
+s S (@r+1)M2s+ 1)!rr7ra)
r4s=k—1
1
+2 Yoo@r+DN@s+ D! D (T, )T,

r+s=k—1 I1c{1,...,n}

for any d = (d1,... ,dn). It follows that, provided s # 2 mod 3,

Ofeir)= ﬁ [(25 + 3)(25 + )T (s + 1,7) + (3r—2s + 5)(3r—2s + 3)T(s,7)
+6(r+2)(T(s—2,r—2)+2T(s—1,r—2) +T(s,7—2))] .
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Furthermore we have
T(s,r) =0 ifs<0,
T0O,7)=1,
T(l,r)y=r+1,

T(2,r) = ﬁ [(3r +3)(3r + 1) + 6(r +2)] ,

T(3:7) = 3—;—7 [(3r +3)3r+1)(3r—1)+3-12r(r +2) + g(r+ 2%
T(4,r) = ﬁ [(31’ +3)(3r +1)(3r — 1)(3r — 3)
+ 12(r + 2) (3-5+ gr+ g) T(L,r—2)
+3-5-12(r+2)T(2,r—2)] ,
T(G,r) = 357—1911 [(37" +3)(3r +1)(3r — 1)(3r — 3)(3r — 5)

¥ =4

+12(r+2)((3~5-7+3-3.5-r+ SO)T(ZT—‘Z)

+3-5-7-T(3,r—2))] .

Now consider the system of three linear equations in the unknowns a, b, and
¢ given by

(r+2)! it
o w(g)(r+n—l)!/ o

for s = 0,1,3. The coefficients are implicitly given by (4.3), and can be
calculated using the formulas for U(s,r) and T'(s,r) we have just given. An
algebraic calculation (best done by computer) shows that the determinant of
this system equals

36

= (r—2)r*(r +2)%(r + n)(4r + 17).

Recall that n is an integer greater than or equal to 2, and that r is an integer
greater than or equal to —2; thus our determinant vanishes only for r =
—-2,0,2, that is, for g = 0,1,2. This shows that a =b=c=0for g > 3. If
g = 2, the class &, is linearly dependent on the others, so that we may set
a = 0 and view Eqq and Eq; as a linear system in the unknowns b and ¢. The
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determinant of this system equals (1536/5)(n + 2), which is nonzero in our
situation. If ¢ = 1 one may set a = b = 0, and the coefficient of ¢ in Eqq is
24. If g = 0 the classes ki, ¢, and d;,.. (= 0) are linear combinations of the
bp.h-
We have thus shown that, for any value of the genus g, the class z is a
linear combination
= Z cp.hép.hs

(p.h)eA

where A is as defined in (4.1). We wish to show that ¢, vanishes unless
h =0 or h =n. Assume first that g > 0. Set

j—1
Boj=¥i 7 [[wn, s=3g-2+n,

h=2
A j+1
Boi =¥ 03" [[vn, s=3(g-9)-2+n ifg>0.
h=3

The intersection number f 0p.nf0,; is, a priori, a linear combination of terms
of the form

(L FTWET L o o SRR T

or
o g g ans T T g pm L

However, since (7‘3 “T{l)g_p.,,_h_u is nonzero only if b = 2, in which case

g —p = 0, there are no terms of the second kind. As for those of the first
kind, they may be nonzero only ifa =2, p=0,h=a+c,c+d=7—2, so
that h < a+ j—2 = j. In conclusion

(4.4) /6,,,,1/3(,?]‘ = o if 0ioE Bl g
moreover,
(4.5) /50.3'50.]' #0 ifl<j<n,

J

since this number is a positive multiple of (737{ ) (10 I T3y_94n_;) # 0. Let

us now compute the intersection number

/ 6]1,}”[3(]‘_7
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when ¢ > 0 and, as usual, p < ¢g/2. This is, a priori, a linear combination of
terms of the form

atl_c b+1_d
<T0 Tlﬁiq—l>p.h+l<'ro T1Ts—j>g—p.n hils

or

at+1l__¢ b+1__d
To TiTs j)rl.h t 1<T0 T T.'Sq—l)g—p.n—h+l )

or else

a+1_c¢ b4l _d
(0" m)pr+1{Tg" T T3q—1Ts—j)g—pn—h+1,

or, finally,

a+1l_c¢_ b+1__d
<7-()+ TIT3¢g-1Ts j>p,h+l(7'() T )_r;—p,n—h+1-

We already saw that a term of this last type is not equal to zero only if
g —p = 0, which is impossible. Terms of the third type are different from
zeroonly if p=0,a=2, h=c+2<j+1. Let us analyze terms of the first
type. These are nonzero only if 3p —3+ h+1 = 3¢ — 1 — ¢. On the other
hand, h = a + ¢ + 1, so that 3¢ = 3p + a. Furthermore ¢+ d = j — 1, so that
h < j 4+ a. The same argument shows that there are no nonzero terms of the
second type. We conclude that

(46) /‘%.hﬂq.j =0 lfp >qorp < q; h > 7 #+ 3((] 53 p) }
moreover,
(4.7) /6,,,;,8,,_;, #0 f0<h<n,

since this number is a positive multiple of (7'07'{"_] 7‘;51,_1)(7—61_’17-3( G )
# 0. Arguing by double induction on p and h, it follows from (4.4), (4.5),
(4.6), and (4.7) that ¢, , = 0 for all p and all A different from 0 and n. This
proves the lemma for positive g. The argument for g = 0 is similar. The

integral
/ bo.nty *

(T(;z)().h-é-l (T(?Tn.—-t)().n—h+ 1

is a sum of terms of the form

or
(T8 Tn—1)0,h+1{T)0,n—hot1 -
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Those of the first kind are nonzero (and positive) only when h = 2 and a = 3,
and those of the second kind when h = n—2 and b = 3; however, since h < n/2,
the latter occurs only when n = 4 and h = 2. In conclusion f 504;,1/;'11_4 is

nonzero if, and only if, h = 2; this implies that ¢y » = 0. Now look at

/ o n TS

where o + 3 =n—4, @ < 3, and h > 2. This integral is a sum of terms of
the form

<T(31)0.h+1 (T(?Tcﬂ-ﬁ)().n—hﬁ-] 3
(TgTaTﬁ>O.h+1<T8>0,n—h+1 )

(187 Yo n+1{T0T8)0m—h+1 »
or

(1878)0,h+1 (TETaYon—h+1 -

All terms of the first two kinds are zero since 2 < h < n — 2. Terms of the
third kind are nonzero only when h = a+2 = a, and those of the fourth kind
only when h = 3 + 2 = a. This last possibility occurs only for o = 3; so we
may conclude that [ 50.;111)?11)5 # 0 if, and only if, h = a + 2. Since we know
that cg» is zero, this implies that ¢, = 0 for every h between 3 and n/2, and
finishes the proof of the lemma.

As we announced, to complete the proof of Proposition 1 it remains to
compare the (co)homology of M., , with that of M, ,,. Rational coefficients

g.mn
will be used throughout. We shall show that

Lemma. There is an exact sequence

0_)H69—6+2n~2(ﬂ‘;~n)“_.)Hb'y—b’+2n—2(“M_g.n) — A -0,

where « : Hg_n — H;." 15 the natural map and A is the vector space freely

generated by the boundary classes 6,4, with 1 <p<g(or1 <p<g-—1for
n=1).

A consequence of this lemma is that the functional defined by integration
on W lifts to an element W of H9- 2 (NEsa)Y & Hiy aion-3(Man):
which we may choose to be S,-invariant, since W is. Proposition 1 follows by
applying Lemma 2 to the difference between 12k, — é and the Poincaré dual

of W.
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We now prove the lemma. Look at the commutative diagram
Hd 2(]/[—’)
0/ e
HIAM\E) = HEA(M\ ) — H(M)

| ! !

Hy(M\T) «— Hy(M\E) = Hy(M)

where we have set d = 6g — 6 + 2n, M = ﬂg,n, M = ng,n, and X (resp.,
') stands for the union of the components of M of the form A, ¢ (resp., the
image of ¥ in m’). The three vertical arrows are isomorphisms by Poincaré
duality. The map p is a picce of the exact sequence of cohomology with
compact support

s HON ) B 2 A e BN )~ H AT s o

On the other hand, H¢ 3(X’) and H92(%’) vanish since the dimension of ¥’ is
strictly smaller than d —3; so p is an isomorphism. It follows in particular that
«* is injective if and only if ¢ is, and that its cokernel can be identified with
the one of ¢. Passing to duals, we have to look at 0" : H*(M) — H*(M\ ),
which fits into the exact sequence

o HA(M; M\ £) —» H2 (M) 25 H2(M\ £) » H¥(M; M\ Z) — --- .

Now the Thom isomorphism implies that H3(M;M \ ¥) vanishes, since
H'(M, 1) does, for any p and h, and that, moreover, H?(M; M\ ¥) is freely
generated by the classes of the components of X. Since the images of these
are independent in H?(M), the conclusion follows.

5. Examples and comments

It is instructive to work out a couple of simple examples. It should be clear
from them how intricate a direct attack on the problem would be. We begin
by checking formula (2.3) on M;; and on Mg 4. One thing that simplifies
matters in these cases is that, for these values of g and n, one has ﬂlg‘n =
Hg,n. We shall write M for M(gm, 1,0...).n and W for Wigm, 10.,...)n- In
general, if v and [ stand for the numbers of vertices and edges of a ribbon graph
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of genus g with n boundary components all of whose vertices are trivalent save
for a pentavalent one, one has

v=2n+49—-6, l=3n+6g—8.

In the case of M, ; this yields v = 0; thus, W = 0. To check (2.30) in this
case we must then show that 12x, = §. But now one knows that &) = 12\ —§
vanishes on M, ; (cf. [6], for instance). On the other hand, ¥ = A. Thus
12k = 1290 = 12X = 6, as desired.

The case of My, is more entertaining. The formulas above give v =
2, | = 4; in particular, M is 4-dimensional and hence W zero-dimensional.
The possible graphs in M are those of type a), b), and ¢) in Figure 3; their
degenerations are illustrated in d), e), [), and g). Among these, the first
two are internal to moduli, while the last two correspond to points in the
boundary.

Now let us consider the projection

——comb

n: M0_4 — HO._; X Rdi i IR4

which associates to any numbered ribbon graph with metric the quadruple of
positive real numbers given by the lengths of its four boundary components.
Clearly, a cycle Z in M, 4 representing W can be obtained by cutting M with
a section n = (P1,..., ), where the P; are positive constants. We choose
Py,..., Py in such a way that P, > 10P;, for i = 1,2,3. Since for graphs
f) and g) two of the perimeters necessarily coincide, Z is entirely contained
in the interior of moduli. We now show that graphs of types c), d), and e)
cannot occur in Z. In fact, for graphs of type d) one of the perimeters equals
the sum of the remaining three, and this is forbidden by our choice of P’s.
In e) one of the perimeters, which we may assume to be the longest, equals
the sum of two of the other perimeters minus the remaining one. This too
is incompatible with our choices. Let us now look at graph c), where the
edges have been labelled with their respective lengths 1;,... ,l;. Up to the
numbering of the boundary components the perimeters are

p=bL+ly, p=b+ly, p3=Il3, pa=bL+1l+1;.
We also have the obvious inequalities
Pa<pr+p2+p3, P3<ps, Pr<p2tps, p2<p1+ps.

These inequalities imply, in order, that neither pys, nor p3, nor p, or p; can
equal P;. This excludes case ¢). We next examine case a). It is clear that the
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L
l 3 { 2 13 .m
Ly '
Lo
a) b) c)
d) e) f) g)
FIGURE 3

longest perimeter is the “external” one and that, except for this restriction,
the perimeters can be arbitrarily assigned. Therefore this case accounts for
6 = 3! points of Z, one for each choice of labelling of the three “internal”
boundary components by {1, 2, 3}.

We now examine graph b). Up to the numbering of the boundary compo-
nents the perimeters are

m=b, p=l, p3=ls+l, ps=l+Il3+2,.

The following inequalities hold:

P1<p3, pP2<ps, P3<p1+pg, pr+p2<ps+ps.

From the first three inequalities we get in particular that we must have py =
Py. The only possibilities for (p1,p2, ps, ps) are

(Py, Py, Ba Ba)s [Py P Pyl (55, P By, Fy) .

In conclusion, the support of Z consists of 9 points. We claim that Z is the
sum of these points, taken with the positive sign. This follows immediately
from Kontsevich’s recipe (cf. [7], page 11) for the orientation of Z. In his
notation, this is given by Q7 where d is the dimension of Z, i.e., by the
constant 1. It follows that W is 9 times the fundamental class of Mg 4 = P'.
To prove formula (2.3) in the present case it now suffices to show that 12k, — &
has degree 9. This follows if we can show that

degd =3, degw =4, deghk)=—degéd=-3.
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We briefly indicate how to do it. Set X’ = P! x P!, denote by f’ the projection
onto the second factor, and by o}, i = 1,2,3, three constant sections of f’.
Blow up X’ at the three points where these sections meet the diagonal, to
obtain a family f : X — P! together with four disjoint sections oy,... 04,
which are the proper transforms of o1,...,0% and of the diagonal. This is
the universal curve over My, 4. Denote by E;, I, E3 the exceptional curves
of the blow-up, and set D; = o;(P'). Then

0=(D;+E;)*=D?+2+E}=D?+1 ifi<3,
2=(Ds+ Y E;)*=D3+6—-3=D}+3.

In all cases deg; = —D? = 1, so that 1 has degree 4. Clearly, A = 0, and
degé = 3, since the universal family contains exactly three singular fibers.
The result follows.

With the next example in mind, we now make a general remark. Fix a
sequence m, = (0,my,...) and a positive integer n, and denote by v, [, and
g the number of vertices, of edges, and the genus of any graph belonging to
Me™ | The real dimension of W, ,, equals [ —n, while g is given by 2—2g =
v—I1+n. It follows that v < 0, and hence W, ,, is empty, as soon as the real
codimension of W, _ ,, equals or exceeds 4g—4+2n. In particular, in this range,
the formulas we are after would amount to expressing certain polynomials in
the Mumford classes as linear combinations of boundary classes. Moreover, if
indeed these formulas were given by the DFIZ theorem, one could conclude,
by induction on the level, that all monomials in the Mumford classes vanish
on M, , in real codimension at least 4g — 4 + 2n. This is indeed true, as
follows from the observation by Harer (cf. [5], for instance) that M, , has
the homotopy type of a CW-complex of dimension 4¢g — 4 + n.

We next look at the codimension-two classes W,,,_ ,, on M3 .2. The remark
we just made implies in particular that these are both zero. The corresponding
conjectural formulas coming from the DFIZ theorem are

(5.1) 0 = 120K — 6&;rp, (Y1) — 6&1,0, (Y1 X 1) + 308, 9, (¥1 x 1),

0 = 72x7 — 348K2 — 6&irr, (K1) — 12€19, (K1 X 1)

12 () + 12610, (1 X 1)+ 3 3 EBp0), (1)
(5.2) i

1
s gﬁ(n.p.m*(l) — 36610, (%1 x 1).
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This last formula is a special case of formula (3.15). We have used the fact
that graphs of type A and C cannot occur in our situation. It should also
be observed that the term corresponding to graph B consists of a single sum-
mand, for the two marked points must of necessity be on the rational tail.
On the other hand, two distinct summands appear in the term corresponding
to graph D. In fact, this corresponds geometrically to two smooth rational
curves joined at two points, each component carrying a marked point, and
these can be labelled in two different ways. Now, using the computations of
the two preceding examples, we have that

/_ irru(K1) = /_ K1 =1, /_ Eirre(Y1) = /_ Py=1,
My JMo.a Mi 2 J Mg a
1
§ 0, 1#" x1)= ”‘/1 S
[ aawxn= [ w=g

./ML]

1
10,(k1 x 1) =/ K1 = 57,
/ﬂl‘g Hl,l 24
/ ¢Bop.p),(1)= /_ takter Bedd,
My My 3xMos
/_ &pp.p), (1) = /_ B
M2 Mo.zxMos

On the other hand, one has

hEErRr e
R = —, L T
M2 24 M2 8

This follows either from a simple algebro-geometric calculation or, alterna-
tively, by noticing that the integrals to be computed are just

1

{gms) =/(ri}= =

and
(ra73) — (1o73) = 2(TomiT2) — (1) = 2(10m2) + 2(mm1) — (1) = 3(n) = é

Substituting these values in the right-hand sides of (5.1) and (5.2) gives zero,
as desired.

We end this section with a few remarks. The first one concerns possible
generalizations of Lemma 2, and hence of Proposition 1, of section 4 to higher
codimension. It is clear that an essential ingredient in the proof of that



741 ENRICO ARBARELLO AND MAURIZIO CORNALBA

lemma is the possibility of writing every degree-two cohomology class as a
linear combination of standard ones. The analogue of this is only known to
hold in degree four, although it is a standard conjecture that it should in
fact hold in every degree, provided the genus is sufficiently large. However, it
would not be without interest, and perhaps provable with the same methods
we have used in this section, that an analogue of Lemma 2 holds in all degrees,
provided attention is restricted only to those cohomology classes that can be
expressed as linear combinations of standard ones.

The second remark has to do with relations among standard classes. There
is a set of conjectures, due to Faber [unpublished], dealing with the relations
that the classes x; satisfy in the rational cohomology of M,. It is known
(9], [10] that there are no such relations in degree less than g/6. For higher
degrees Faber provides an explicit algebro-geometric recipe to generate rela-
tions which, conjecturally, should yield all relations. It occurred to us that
perhaps a way of obtaining relations among the &; in M, , could be via a
recent result of Mulase [11], which states that the function Z(t.,s,) satisfies
the KdV hierarchy as a function of s., for any fixed ¢.. Making these equa-
tions explicit would yield relations among the derivatives of F' with respect
to the s variables, and we have explained how these could be translated into
relations among the k;.

Finally, it is clear that one needs to understand better the DFIZ theo-
rem. In particular, one should try to systematically explain the marvellous
cancellations that experimentally occur in all the cases we have been able to
compute. It is also tempting to speculate on the nature of the coefficients ap-
pearing in the formulas expressing partials of the function F with respect to
the s variables in terms of those with respect to the ¢ variables. For instance,
as the referee remarked, almost all the coefficients in the first few formulas,
according to weight, as given in the Appendix, are products of very small
primes, and one may wonder whether this reflects a general pattern. Our feel-
ing is that this should not be the case. However, we do not have a sufficiently
good understanding of the DFIZ theorem, or enough numerical evidence, to
be able to argue convincingly for either alternative.

Appendix

Below are listed the expressions of the derivatives of F' with respect to the s
variables in terms of derivatives with respect to t variables that are relevant to
the problem of expressing classes W, ,, in terms of algebro-geometric classes,
up to weight 15. We recall that the weight of a partial derivative [[(8/ds;)™
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is defined to be Y m;(2i + 1). Of course the equalities below hold only at
s, =4 =(0,1,0,...).

OF _,0F 19°F 1 (oFY:
652 a (‘)tg 2 ('9t8 ()t()

oF oF O*F oF OF 5 0F
T T o PR ol el o

o B BBt~ ot 1 Ui

OF oF 3?*F AF\? ?F OF 8F T &F
= — —1 -1 —60 ——— —60 —— — + = —=
PR o M S dr, ¥ (de> Votadts ok Big.' 6 08
TOF &F 7 (OF\* 490F 35
2 Oty O3 Aty 2 9ty 96
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