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A simple proof of the projectivity of Kontsevich’s space of maps

Maurizio Cornalba1

Sunto: Si dà una semplice dimostrazione della proiettività della compattificazione dello spazio delle

mappe da curve algebriche a spazi proiettivi recentemente introdotta da Kontsevich.

The stacks of stable maps from curves to projective space have been introduced by
Kontsevich [5][6]. It has been observed by several people that the underlying algebraic
spaces are in fact projective. A proof can be found in [7]. Here we wish to present a simple
proof based on the methods of [1]. We work over C throughout.

Consider a complete, connected, reduced curve C whose singularities are at worst
nodes, n smooth numbered points x1, . . . , xn on C, and a morphism µ : C → Pr. According
to Kontsevich, one says that the datum of C, x1, . . . , xn, and µ is a stable map if the
following condition is satisfied. Let E be a smooth component of C such that µ(E) is
a point; if the genus of E is zero (resp., one) then E contains at least three (resp., one)
points which are among the xi or are singular in C but not in E. An isomorphism between
stable maps (C, x1, . . . , xn, µ) and (C �

, x
�
1, . . . , x

�
n, µ

�) is an isomorphism ϕ : C → C
� such

that ϕ(xi) = x
�
i for i = 1, . . . , n and µ

�
ϕ = µ. A family of stable maps is a flat proper

morphism f : C → S together with n sections σi : S → C, i = 1, . . . , n and a morphism
µ : C → Pr such that, for every s ∈ S, (f−1(s), σ1(s), . . . , σn(s), µ��f−1(s)

) is a stable map.

One has obvious notions of pullback and of isomorphism between families of stable maps.

Let F = (C, x1, . . . , xn, µ) be a stable map of degree d. If Q is a sufficiently general
member of |OPr (3)|, then µ

∗(Q) =
�

pi is a divisor consisting of 3d smooth points of C,
each occurring with multiplicity one. Furthermore, Γ = (C, x1, . . . , xn, p1, . . . , p3d) is a
stable (n + 3d)-pointed curve. We then have an exact sequence of groups

1 → G → Aut(F ) → G
�
,

where G = Aut(Γ) ∩ Aut(F ) and G
� is the group of permutations of p1, . . . , p3d. This

shows that there is an upper bound for the order of Aut(F ) which depends only on d, n,
and the genus g of C. The fact that Γ is stable also implies that the number of singular
points of C is bounded by 3g − 3 + n + 3d.

Fix non-negative integers g, n, r, d. Then the functor

F(S) =
�

families of stable maps of degree d

from n-pointed genus g curves to Pr

� �
isomorphisms

is coarsely represented by a complete separated algebraic space Mg,n(r, d) (cf. [5][7]).
Clearly, Mg,n(r, d) is non-empty if and only if 2g − 2 + n + 3d > 0, and d = 0 for
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r = 0. We wish to show that Mg,n(r, d) is projective. This is clear if d = 0. In fact,
Mg,n(r, 0) = Mg,n × Pr, where Mg,n is the usual moduli space of stable n-pointed genus
g curves, and we know that Mg,n is projective.

For d > 0 we argue as follows. For any family

C µ

f

Pr

S

σi, i = 1, . . . , n

of stable maps of degree d from n-pointed curves of genus g to Pr, which we denote by F ,
set

LF = ωf (
�

Di)⊗ µ
∗O(3) ,

where ωf = ωC/S is the relative dualizing sheaf and Di = σi(S). We also set

LF = �LF , LF � ,

where � , � is Deligne’s bilinear symbol (cf. [2][3]); LF is a line bundle on S which behaves
nicely under base change. Therefore this construction defines a line bundle L on the
moduli stack of stable maps of degree d from n-pointed curves of genus g to Pr. Since, as
we observed, the orders of the automorphisms groups of such maps are bounded, L can be
viewed as a fractional line bundle on Mg,n(r, d). We shall prove the following result.

Theorem 1. For any choice of non-negative integers g, n, r, and d such that

2g − 2 + n + 3d > 0 ,

d > 0 if r > 0 ,

L is ample on Mg,n(r, d).

Notice that, for r = d = 0, the theorem reduces to the well-known statement that
Mumford’s class κ1 is ample on Mg,n (cf. [1], for instance). The first step in the proof is
to observe that there is a family G of stable maps of degree d from n-pointed curves of
genus g to Pr parametrized by a scheme Z such that the corresponding moduli map

ν : Z → Mg,n(r, d)

is finite. A proof of this is sketched for instance in [7], based on a modification of a
construction of Kollàr [4]. To show that L is ample it suffices to show that ν

∗(L) = LG is
ample on Z. In order to prove this we shall use Seshadri’s criterion. In other terms, we
shall show that there is a positive constant α such that, for any integral complete curve Γ
in Z, one has

(LG · Γ) ≥ α m(Γ) ,

where m(Γ) stands for the maximum multiplicity of points of Γ. Since the intersection
number (LG · Γ) is the degree of LG� , where G

� is the pullback of G via the inclusion
Γ ⊂ Z, we will be done if we can show that there is a positive constant α such that
degLF ≥ α m(S) for any non-isotrivial family F of stable maps of degree d from n-pointed
genus g curves to Pr parametrized by an integral complete curve S. Here non-isotrivial
means that the moduli map S → Mg,n(r, d) does not send S to a point. Taking into
account the definition of LF , what needs to be proved is
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Lemma 2. If 2g − 2 + n + 3d > 0 and d > 0 or r = d = 0, there is a positive constant
α = α(g, n, r, d) such that, for any non-isotrivial family F of degree d stable maps from
n-pointed genus g curves to Pr over an integral complete curve S,

(LF · LF ) ≥ α m(S) .

The proof is essentially by reduction to the known case r = d = 0. From now on we
assume that d > 0. Let the family F be given by maps f : C → S, µ : C → Pr and sections
σi : S → C, i = 1, . . . , n. We begin by reducing to the case when the general fiber of f

is smooth. Denote by Σ(F ) the union of all one-dimensional components of the locus of
nodes in the fibers of f , and by πF : N(F ) → C the normalization of C along Σ(F ). Let
ψ : S

� → S be a finite unramified base change, and let

C� µ
�

f
�

Pr

S
�

σ
�
i, i = 1, . . . , n

be the pullback family, which we call F
�. We can choose ψ in such a way that π

−1
F � (Σ(F �))

is a disjoint union of sections of N(F �) → S
�. Moreover, since the number of singular

points in the fibers of f is bounded independently of F , the degree of ψ can also be chosen
to be bounded. Thus, in proving Lemma 2, we may assume that π

−1
F (Σ(F )) is a disjoint

union of sections of N(F ) → S. Let C1, . . . , Ch be the connected components of N(F ), set
πi = πF

��Ci
, fi = fπi, µi = µπi. Let σi,1, . . . , σi,ni be the sections of fi that come from

components of π
−1
F (Σ(F )) lying on Ci or from sections σj such that σj(S) lies on πF (Ci).

Then the datum of fi : Ci → S, µi : Ci → Pr, and σi,1, . . . , σi,ni is a family of stable maps
of degree di with the property that the general fiber of fi is smooth of genus gi. It is clear
from the definitions that

LFi = π
∗
i (LF ) ,

so that
(LF · LF ) =

�
(LFi · LFi) .

Moreover the invariants gi, ni, di satisfy the inequalities

gi ≤ g , di ≤ d , ni ≤ n + 2(3g − 3 + n + 3d) .

This shows that it suffices to prove Lemma 2 for families whose general fiber is smooth;
in fact, the possible objection that some of the families Fi might be such that di = 0, so
that Lemma 2 is false for them if r �= 0, may be countered as follows. Suppose all the Fi

with di �= 0 are isotrivial, but Fj is not. Then µj(Cj) is a single point, so fj : Cj → S is
non-isotrivial as a family of stable curves, and one can apply to it Lemma 2 with r = d = 0.

From now on we assume that the general fiber of f : C → S is smooth. We set
Di = σi(S) for i = 1, . . . , n. A simple dimension count shows that, if H is a sufficiently
general hyperplane, then

i) µ
−1(H) does not contain components of fibers of f ;

ii) µ
−1(H) does not contain singular points of fibers of f ;
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iii) µ
−1(H) does not contain points of intersection between one of the Di, i = 1, . . . , n,

and the fibers of f which are singular or lie above singular points of S.
iv) µ

−1(H) does not contain Di for i = 1, . . . , n;
v) µ

−1(H) cuts transversely all the fibers of f which are singular or lie over singular
points of S.

Let H1, H2, and H3 be distinct hyperplanes satisfying i), ii), iii), iv) and v). Possibly
after a finite base change of bounded degree, µ

−1(H1 +H2 +H3) becomes a sum of distinct
sections. Moreover, since H1, H2, and H3 satisfy v), we may choose a base change that
does not affect m(S). We may thus assume that

µ
−1(H1) = Dn+1 + · · ·+ Dn+d ,

µ
−1(H2) = Dn+d+1 + · · ·+ Dn+2d ,

µ
−1(H3) = Dn+2d+1 + · · ·+ Dn+3d ,

where Dn+1, . . . , Dn+3d are distinct sections, different from D1, . . . , Dn. The family of
curves f : C → S, together with the sections D1, . . . , Dn+3d, has all the characters of a
family of stable (n+3d)-pointed curves, except for the fact that some of the Di may meet;
however, by properties ii) and iii), this may occur only on smooth fibers of f not lying
above singular points of S. To obtain a family (f �� : C�� → S, D

��
1 , . . . , D

��
n+3d) of semi-

stable (n + 3d)-pointed curves it is necessary to blow up, perhaps repeatedly, the points
of intersection of two or more of the Di and possibly, in genus zero, blow down some
exceptional curves of the first kind. At each blow-up, the selfintersection of ωf (

�n+3d
i=1 Di)

decreases. If g = 0 and, at any stage of the process, the (proper transforms of the) Di all
meet at a point p of a smooth fiber Γ, the proper transform of Γ under the blow-up at
p is an exceptional curve of the first kind not meeting sections, which needs to be blown
down. The blow-down increases the selfintersection of ωf (

�
Di) exactly by one. Thus, in

any case
(ωf (

�
Di) · ωf (

�
Di)) ≥ (ωf �� (

�
D
��
i ) · ωf �� (

�
D
��
i )) .

Now, if
F
� = (f � : C� → S, D

�
1, . . . , D

�
n+3d)

is the stable model of (f �� : C�� → S, D
��
1 , . . . , D

��
n+3d), we have that

(ωf � (
�

D
�
i) · ωf � (

�
D
�
i)) = (ωf �� (

�
D
��
i ) · ωf �� (

�
D
��
i )) ,

so we conclude that
(LF · LF ) ≥ (LF � · LF �) .

If F
� is not isotrivial, we are done, since κ1 is ample on Mg,n+3d. From now on, we assume

that F
� is isotrivial. In particular, this implies that all the fibers of f : C → S are smooth.

When g > 0, C� dominates C, so C� = C and the Di do not meet. Another consequence is
that µ(C) is a surface. To see it, just combine the non-isotriviality of F with the following
result.

Lemma 3. Let X and Y be smooth curves, denote by p the genus of Y , let U be a disk,
and let y1, . . . , yh be distinct points of Y . Suppose 2p − 2 + h > 0. Let Ψ : X × U → Y

be a morphism such that the divisor Ψ−1(
�

yi) is a sum
�

{xj} ×U , where the xj are k

distinct points of X. Then, for any x ∈ X, Ψ(x, u) is independent of u.
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To proof uses elementary deformation theory. Let ψ : X → Y be a morphism such
that ψ

−1(
�

yi) =
�

xj . The first order deformations of ψ as a map from the k-pointed
curve (X, x1, . . . , xk) to Y sending the xj to the yi are classified by H

0(X,F), where F
stands for ψ

∗(TY (−
�

yi))/TX(−
�

xj), and those such that the moduli of (X, x1, . . . , xk)
do not vary by the image of H

0(X, ψ
∗(TY (−

�
yi))) in H

0(X,F). The conclusion follows
from the fact that the degree of ψ

∗(TY (−
�

yi)) is a multiple of 2 − 2p − h, and hence
negative.

For g > 0 we reach a contradiction establishing Lemma 2 by noticing that, since µ(C)
is a surface, H1∩H2∩µ(C) is non-empty, so the Di cannot be disjoint, contrary to what we
established earlier. When g = 0, we argue somewhat differently. Since µ(C) is a surface,
by choosing H1, H2, and H3 to be sufficiently general, we may assume that µ(Di) is not
a point for i > n. Thus, if i > n and p is any point of Di, there is a hyperplane passing
through µ(p) but not containing µ(Di). It follows that

(µ∗O(1) ·Di) ≥ m(S) for any i > n .

Now set
ηh = ωf

� �

i≤h

Di

�
.

We wish to show that, for any h ≥ 2 and any section D of f ,

(ηh · ηh) ≥ 0 , (ηh ·D) ≥ 0 .

In fact η2 = O(
�

aiΓi), where the Γi are fibers of f , so
�

ai = (η2 · D1) = (D2 · D1) ≥ 0
and

(η2 · η2) = 0 , (η2 ·D) =
�

ai ≥ 0 .

In general

(ηh · ηh) = (η2 · η2) +
�

2<i≤h

(Di · η2) +
�

2<j≤h

(Dj · ωf (Dj)) +
�

i≤h, 2<j≤h
i�=j

(Di ·Dj) ≥ 0 ,

while
(ηh ·D) = (ωf (Dj) ·Dj) +

�

0<i≤h
i�=j

(Di ·Dj) ≥ 0 ,

if D = Dj for some j ≤ h, and

(ηh ·D) = (η2 ·D) +
�

2<i≤h

(Di ·D) ≥ 0

otherwise. Thus

(LF · LF ) = (ηn+2d · ηn+2d) + 2
�

i>n+2d

(Di · ηn+2d) +
�

i>n+2d

(Di · µ∗O(1)) ≥ d m(S) .

This finishes the proof of Lemma 2, and hence of Theorem 1.
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