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On the projectivity of the moduli spaces of curves

By M.D.T. Cornalba") at Pavia

1. There are basically three algebraic proofs of the projectivity of the moduli spaces
of stable curves: the original one by Knudsen [8], [9], the proof by Mumford [12] and
Gieseker [ 5], which makes heavy use of the machinery of geometric invariant theory, and the
more recent one by Viehweg [15] and Kollar [10], which relies instead on the semipositivity
of the direct images of powers of the relative dualizing sheaf and, at least in Kollar’s
version, does not use geometric invariant theory at all. In this note, combining ideas from
the above papers and from [4], we shall outline a proof of projectivity which, we believe, is
simpler and more direct than any of the existing ones. However, while the proofs by
Mumford, Gieseker, Viehweg, and Kollar are applicable, at least in principle, to a wide
variety of moduli problems, ours uses in an essential way the peculiarities of the problem
at hand, and it is hard to see how it could be extended to other situations.

Mumford’s idea is to use the machinery of geometric invariant theory to directly con-
struct the moduli space of stable curves as a projective quotient of the Chow or Hilbert
scheme of pluricanonically embedded stable curves by the action of the projective linear
group. To be able to do so, one needs to show that the k-canonical images of stable curves
are stable in the invariant-theoretic sense for high k. This is quite well understood, although
not really easy, for smooth curves; one notices that k-canonically embedded stable curves are
linearly stable, and then proves that, for smooth curves, linear stability implies invariant-
theoretic stability. In the singular case, by contrast, both Mumford and Gieseker have to
rely on indirect arguments which are quite long and involved. Our main point is that one can
avoid proving the invariant-theoretic stability of singular stable curves provided one is
willing to grant that moduli space exists as a complete algebraic space; that this is the case,
incidentally, is relatively easy to prove. As in [10], we prove projectivity by applying to a
suitable invertible sheaf one of the standard numerical ampleness criteria (Seshadri’s
criterion in our case). The necessary numerical estimates are obtained using the techniques of
[4]. More precisely, the invariant-theoretic stability of linearly stable smooth curves is used
to prove an inequality for families of stable curves which, suitably interpreted, says that
the hypothesis of Seshadri’s criterion is satisfied for curves in moduli which are not con-
tained in the boundary. The case of curves lying in the boundary is then reduced to the
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12 Cornalba, Projectivity of moduli spaces of curves

previous one by standard elementary techniques; in order to properly carry out this
procedure, which can be viewed as a sort of induction on the genus, it is convenient to deal
simultaneously with the moduli spaces of stable n-pointed curves as well. In a sense, then, our
approach is to use invariant-theoretic stability as a means of obtaining numerical inequal-
ities, rather than as a step in the construction of quotients by group actions.

2. Let M, be the moduli space of stable n-pointed curves of genus g. It is not too
hard to prove that it is a reduced algebraic space (see [3] or [13], for instance) and then
the stable reduction theorem shows it is complete and separated. We shall produce an
ample line bundle on _,,,,,; in order to describe it we need to briefly recall a few facts about
the Picard groups of moduli spaces, referring to [12], [6], and [2] for more details. The
rational Picard group Pic(M, ,) ® @ contains three distinguished classes 4, 8, and y; this
last class is zero when n = 0. These classes do not correspond to ordinary line bundles, but
only to fractional ones. If we are given a family F of stable n-pointed curves of genus g,
consisting of a family f: X —» S of noded curves together with sections &, ..., g,, and
y:S — M, is the corresponding map to moduli, the classes 4, . and y pull back via y to
classes Ar, d¢, and yy on S, which are easily described in geometric terms. The class 4, is
the class of the line bundle det (£, ), where w; is the relative dualizing sheaf wy g, while,
at least when the general fiber of f'is smooth, d, is the class of ('s(D), where D is the divisor
in S parametrizing singular fibers. As for 1, it is defined as )y, , where v, ; is the class
of 6*(wy). In particular, we see that 4, o, and y, correspond to ordinary. and not frac-
tional, line bundles. When no confusion is likely, we shall often write /".f, 5f, and iy instead
of Zp, dp, and yy. It will be convenient to give slightly different descriptions of 4, and .
Set C; = 0,(S): we claim that / is the class of det (£, (@,(3 C;))) and that v, ;. is the class
of ¢*(Oy(—C;)). If n = 0, there is nothing to prove. If n > 0, the residue homomorphism
w,(C;) = @, is onto and has o, as kernel. This means that ¢*(w,(C,)) is trivial, that
is, that ¢*(w,) and o* (04 (—C,)) are isomorphic. It also implies that there is an exact
sequence

0 - o - 0,3 C) B Y0, = 0,

where Res is the residue homomorphism. Taking direct images and noticing that
Rf (@) = 05, R (0,3 C)) =0,
one gets another exact sequence

el ./;((uf(z C,-v)) - 0 - O, - 0.
Thus
det (f, (0, (Y C))) = det (f, @) det (0F) det (Og) ™" = det(f,w,),

as desired.
It is not hard to show that there is a finite morphism

@2.1) LaZ ol
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where Z is a scheme, with the additional property that there exists on Z a family of stable
n-pointed curves
e Sl e AV Al S £ S S

such that, for any z e Z, the moduli point of (7' (z), 7,(2), ..., 1,(2)) is {(2); for a proof,
we refer to [10]. To show that a line bundle & on M, , is ample, it will then suffice to
show that {* (%) is ample on Z, and to do this it will be enough to check that the hypo-
theses of Seshadri’s criterion of ampleness (cf. [7]) are satisfied. In other words, what we’ll
have to check is that there is a positive constant « such that, for any reduced and irredu-

cible complete curve S < Z,
deg{*(Z))s 2 am(S),

where m(S) stands for the maximum of the multiplicities of points of S.

We shall prove ampleness for the line bundle on M, , corresponding to the class
124 — 0 + . As any subscheme S of Z yields, by pullback, a family of stable curves over
S, Seshadri’s criterion says that it suffices to prove the following result.

Theorem (2.2). Let g and n be non-negative integers; assume moreover that g >1 if
n=0andthat g>0if n =1 or n= 2. Then there is a positive constant o such that, for any
non-isotrivial family F of stable n-pointed curves of genus g over a reduced and irreducible
complete curve S,

12deg (4y) — deg (dy) + deg (wy) Z am(S),
where m(S) is the maximum multiplicity of points of S.

In this section we shall show that it suffices to prove Theorem (2.2) for families whose
general fiber is smooth. Let F be as in (2.2); say it consists of a family f: X — S of noded
curves of genus g, together with sections ¢, ..., g,. Suppose the general fiber of f is sin-
gular. Denote by N(f) the union of the one-dimensional components of the locus of the
nodes of the fibers of f. After a finite base change N( /) becomes a union of sections. Since
the number of singular points of a stable n-pointed curve of genus g is bounded, the degree
of the base change in question can also be bounded: as the effect of a base change of degree
d on the invariants deg 4, deg d, and deg y; is to multiply them by d, we are then reduced
to proving (2.2) under the hypothesis that N( /) is a union of sections. This means that
f: X — S can be obtained from a family f": X’ — S of noded curves whose general fiber
is smooth, but not necessarily connected, with disjoint sections a,, ..., d,, 7;, ..., T,;, by
identifying 7,;_,(S) to 7,;(S), for j=1,...,/ Let n: X" —» X be the identification map,
X, ..., X, the connected components of X", and, for each i, let f;: X; — S be the restric-
tion of f' to X;. Since f: X — S is a family of stable n-pointed curves, each f;: X; — S,
together with the sections o, and t; that lie on X;, whose number we denote by #,, is a
family of stable n;-pointed curves. Set C, = 6,(S), D; = 7;(S). Consider the map R from
T, (wf.(z C,+ ZDj)) to Oy, which, along each section 7(D,;), associates to a mero-
morphic relative differental along /' the sum of its residues along D,;_, and along D, ;.
This map fits into an exact sequence

0 > o,3C) = n,(0.3C,+3 D)) - Ongy = 0.
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Since in our situation

RY, (n, (0,3 C,+Y D)) =R f (0.3 C,+ Y D)) =0,

this in turn yields an exact sequence

0 — f*(mf(z Cv)) =% f:::(wf(z Cv+sz)) = f;(@mf)) T le*(wj(z Cv)) - 0.

Since f, (Oy, ) = Og, while R f, (o,(3 C,)) is zero for n> 0 and equals )5 when n = 0,
we conclude that

(2.3) deg(4,) = ) deg(4,,).
i=1
On the other hand, one has

s 21
deg(3) = Y. deg(é,)+ Y, (D;- D)
i=1 F=1

(cf. [6]), while

‘=1 J

m n 21 21
Y, deg(y)=— Y (C,-C)— Y (D;- D) =deg(y)— X (D;" D).
i=1 =1 =1

This implies that

deg (yy) —deg(9) = } deg(yy)— ) deg(d),
i=1 i=1

and hence, taking into account (2.3), that

m

12 deg (4,) — deg(d,) + deg(yy) = Y (12deg(4,,) — deg(d;,) + deg(yy,) .

i=1
Thus it suffices to prove Theorem (2.2) when the general fiber of f is smooth.

3. Inthis section we shall prove (2.2) for families whose general fiber is smooth, under
the additional hypothesis that » = 0. As we have announced, we shall use the techniques
of [4]. The results of that paper deal with families of curves and line bundles, or, more
precisely, with families /: X — S of noded curves plus a line bundle L on X; at times we
shall refer to such a setup, perhaps somewhat improperly, as a family of polarized noded
curves. We shall say that a family of polarized noded curves is generically trivial if a general
point s € S has a neighbourhood U such that f = (U) — U is isomorphic to a product family
XoxU->U and, moreover, the restriction of L to f~Y(U) comes, by pullback, from a
line bundle on Xj.

Consider a family f/: X — S of connected noded curves of genus g over a reduced and
irreducible complete curve S, and let L be a line bundle on X of relative degree d; suppose
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the general fiber of f is smooth and that r = dim H°(f ~'(s), L,;-1,) is independent of
s € S. The main result of [4] says that

r(L-L)=2ddegf, (L),
provided that

a) L is relatively ample;

b) for general s € § the restriction L, ., is base-point-free, very ample, and embeds
f~(s) as a (Hilbert) semi-stable subscheme of projective space.

Let’s review the proof. For large /4 the map
(3.1 @ :Sym"(f, L) - f,(L"
is onto. Let N be the rank of £, (L"), and consider the map
AN : AN Sym"(f, L) — det(f,(L").

The proof is based on the following remark. If s is a point of S, choosing bases for
HO(f~(s). L ;1) and for det H°(f ~'(s), L!;_.,,) identifies

(/\N(p)s: ANsytho(f_l(S)9 L]j“(s)) 3 delHO(f‘_l(S), er—l(s))

with a point v € V, where V is the N-th exterior power of the A-th symmetric power of the
standard representation of SL(r). To say that f !(s), embedded by the linear system
|L);-1(ls is Hilbert semi-stable means that, for large A, v is semi-stable under the action of
SL(r). Given an SL(r)-invariant polynomial P € Sym'V *, we may evaluate P at v; whether
P vanishes at v or not clearly does not depend on the choice of bases, so that we can speak
of P vanishing, or not vanishing, at (AY¢),. Now let s be a general point of S. If 4 is
sufficiently large, by semi-stability there is an SL(r)-invariant homogeneous polynomial P
that does not vanish at (A" ¢),. Choosing local trivializations for f, L and det(f, (L"),
we get a local regular function # on S by evaluating P on Ag. Since P is SL(r)-
invariant, changing trivialization of f, L by a matrix 4 changes n by a factor
(det A) """ where [ is the degree of P. Thus if, as we may, we assume / to be of the
form rM, where M is an integer, this produces a non-zero section of

det( £ (L™ @ det (f, L)*"™,

so that this line bundle has non-negative degree. One then concludes by evaluating the
degree by means of the Grothendieck Riemann-Roch theorem and letting / go to infinity.

We can improve slightly on the conclusion if we modify the hypotheses by requiring
that the image of f ~!(s) in projective space be stable, and not only semi-stable, that the
family we are dealing with be generically non-trivial, and by replacing condition a) above
with the requirement that R'f, (L") = 0 for large h. Let s’ be any point of S; if s is a
general point of S and (3.1) is onto at s, then (AYg), does not belong to the GL(r)-
orbit of (A" ¢),. Therefore we can choose P so that it vanishes at (AY )., and hence we
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get a non-zero section of det (f, (L")™ ® det(f, L)""™ that vanishes at s'; this same
conclusion is trivially true if (3.1) is not onto at s". If s’ is a point of maximum multiplicity
on S this shows that

deg (det (£, (L")™ ® det (f,L)~"¥¥) = m(S).

Notice that, by the compactness of the Hilbert scheme parametrizing subschemes of 2" !
with Hilbert polynomial p(¢) = dt + 1 — g, the integers 4 and M can be chosen indepen-
dently of /: X — S and L. On the other hand, the Riemann-Roch theorem yields

N=hd+1—g,
: h* h
deg (£ (L") = 5 (L~ L) = 5 (L~ o)) + deg y,
so that we get

Lemma (3.2). Let g = 2, d, and r be positive integers. Then there is a positive integer
ho such that for any integer h 2 h,, there is a positive integer M with the following property.
Consider any generically non-trivial family of polarized noded connected genus g curves
(f: X > S, L) such that the relative degree of L is d. Assume moreover that:

(i) S is a reduced and irreducible complete curve and the general fiber of f is smooth,
(i) R'f, (L") =0 for large h and dAim H®(f ~'(s), L ;-1)) = r for any s€ S,

(iii) for general s€ S the restriction L, -, is base-point-free, very ample, and embeds
f " Y(s) as a (Hilbert) stable subscheme of P™~1.

Then

(3.3) [%(L e a’deg(j;L):| B — % (L-w)h

+rdeg () + (g — 1) deg (L) 2 %m(S).

In practical applications, to check that (iii) holds we shall rely on the fact that a smooth
curve of genus g embedded in projective space by a complete linear system of degree greater
than 2g is linearly stable by Clifford’s theorem, and hence, as is proved for instance in [5],
stable.

Let’s apply Lemma (3.2) to L = wf, where f: X — S is as in the statement of
Theorem (2.2), n = 0, the general fiber of f is smooth, and k > 2. Conditions (i), (ii), and
(iii) are satisfied, and we have

d< kg —1); «r=@k=1)(g-1):
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On the other hand, it is proved in [12] that

(3.4) (o, - w) = 12deg i, —degd,,

2

k
deg (, (@) = deg 4, + —— (12deg 7, — degd).

Thus expanding the left-hand side of (3.3) yields, for fixed &, a polynomial in 4 whose
coefficients are rational linear combinations of deg 4, and deg d, and whose leading term is

k*(g—1)

2
A 2

4
|:12 deg i, — degd, — % deg /’.f] 3

Hence, for large enough A, we get an inequality of the form
Bdeg i, — degd, = am(S),

where 0 < # <12 and « is a positive constant. Since in our situation degd, is non-negative,
this implies that
12deg 4, — degd, = am(S),

as desired. Thus (2.2) is proved for families whose general fiber is smooth when n = 0.

4. In this section we shall complete the proof of (2.2). We begin with a lemma.
Consider a family /: X —» S of noded curves over a reduced and irreducible complete curve
S. Suppose the general fiber of f is smooth, and that f has a section C which does not
pass through any of the singular points of the fibers of f. We shall say that an irreducible
component of a fiber is exceptional if it is smooth and rational and meets the rest of the
fiber only in one point. Let E,, ..., E, be exceptional components that intersect C, and let
Py, ---» Py be the points where they meet the rest of their respective fibers. Near p;, X is
of the form xy = n;, where #, is a function on S. The functions #; define a Cartier divisor
on S, whose degree we denote by u. Let f': X' — § be the family of noded curves obtained
from f: X — S by contracting £, ..., E,, and let C’ be the image of C in X": it is a sec-
tion of f’ which does not pass through any of the singular points of the fibers of f".

Lemma (4.1). (C'-C')=(C-C)+p.

The two sides of the equality do not change if we replace f: X —» S with XX T > T
and C with C x4 T, where T is the normalization of S. In the proof, then, we may as well
assume that S is smooth. By induction, it is also enough to do the case & = 1; we shall
write E for E; and p for p,. Near p, X is of the form xy = t*, where ¢ is a local para-
meter on T, so that u = k. If k> 1, X is singular at p. Desingularizing it has the effect of
replacing p with a chain of k£ — 1 smooth rational curves of selfintersection —2, so that
we can pass from X to X’ by k successive contractions of exceptional curves of the first
kind in smooth surfaces. Therefore it suffices to do the case k = 1. But then the total trans-
form of C' in X is C + E, hence

(C“CY=(CC)+2(C-E) ¥(E-Ey=(C-C)+1=(C-C)+p,

as desired.
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One consequence of (4.1) is that (C - C) < 0 when g = 1. In fact, by successively blow-
ing down exceptional components we may pass from f: X — S to a family of semi-stable
curves; Lemma (4.1) guarantees that at each step the self-intersection of C does not de-
crease. We are thus reduced to the case when the fibers of f are semi-stable. In this case
that (C- C) £ 0 is due to Arakelov (cf. [1] or [14]). It is perhaps worth noticing that
Arakelov’s result is an almost immediate consequence of what has been proved so far. For
instance, in case g > 0, one of the standard proofs is to apply the index theorem on the
surface X to the triple of divisors consisting of w;, C, and a fiber of £, and to use the fact
that (o, - @;) = 0. That this is the case, in turn, follows from (3.4) and the special case of
(2.2) proved in the previous section.

We may now complete the proof of (2.2). As we have observed in section 2, we may
assume that the general fiber of f is smooth. We set C; = ¢,(S). The proof will be divided
into several subcases, depending on g and n. Suppose g > 1. In the previous section we have
done the case n = 0: we assume then that n > 0. We claim that (4.1) reduces us to the case
n = 1. In fact there is one of the sections C,, say C,, such that the family f: X — S, together
with the section C,, is not generically a product. But then omitting C, and contracting the
exceptional components that meet C, and only one of the remaining C, produces a
non-isotrivial family F” of semi-stable (n — 1)-pointed curves; for each i, denote by C; the
image of C;. Further contractions, which do not affect the degrees of 4, 8, and v, yield a
non-isotrivial family F” of stable (n — 1)-pointed curves. Now, by (4.1), the selfintersec-
tions of the C/ are of the form

(G- C)=(C-C)+ ;..

Notice also that, by construction,

n—1
”n = Z Mi *
i=1
Thus
n—1 n—1
deglPF” — deg U’y R Z (Ci’ 5 Ci’) T Z (Cl 5 (‘1) 53 #n — degq’F 1 l“n o (Cn : Cn) ]
i=1 i=1
while
deg Ay = degip = degip, degdp. =degd, =degd,—pu,,
so that

12deg Ap — degdp + degyp = 12deg Ay — deg 6y + deg . — (C, - C,)
= 12deg Ay — degdp.. + degyp.. .

By induction on n, this proves our contention. If /: X — S is not isotrivial we can go one
step further and omit C, as well, reducing to the case n = 0, which we settled in the pre-
vious section. The case when f: X — S is isotrivial can be dealt with in several ways. One
which is in the spirit of the rest of the paper is as follows. Write C for C, and consider the
line bundle L = a)f(C), where k = 3. Then f: X — S, together with L, is a generically
non-trivial family of polarized noded curves, and the hypotheses of (3.2) are satisfied. In
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our situation (@, - @), deg A, and degd, all vanish; hence the left-hand side of (3.3) is a
polynomial in & whose coefficients are rational multiples of

degy, = 12deg 4, — degd, + degy .

Furthermore its leading term is gdeg tpf(hz/ 2) so that, for large A, (3.3) yields (2.2) in our
situation.

Now suppose g = 1. Using Lemma (4.1), the same argument as for g > 1 shows that
it suffices to do the case n = 2 when f: X — S is generically a product family, and the case
n = 1. Suppose first that n =1 and write C for C,. For k = 3 the line bundle L = ¢ (kC)
satisfies the hypotheses of (3.2), with r = d = k. Looking at the exact sequences

0 - £(0(E—1C)) - £(0GC)) - £(0GC),) —» 0
for i > 1 one sees easily that

K24k =
degl )=~

2
2 deg Wf ’

so the left-hand side of (3.3) has coefficients which are linear combinations of deg 4, and
of degy;, and leading term k(k — 2)deg yyh*. Since in the situation we are considering

12deg i, —degd, =0
(cf. [12]), this proves (2.2) for g=n=1. When n =2 and f: X — S is generically a pro-
duct family, the argument is similar. We notice first that deg 1, = 0 and that, by (4.1),

1
degd, = —(C;-C))=—-(G-G) = idegw_f-

Next set L = O(kC, + kC,), with k = 2. Arguing as for n =1 one sees that, for some
positive «,

1
12deg A, — degd, + degy, = 7degqyf =>am(S).

It remains to discuss the case g = 0. To begin with, notice that deg4, = 0. Let T be
the normalization of S. Then f': X' = X X T — T, together with the sections C/ = C; X4 T,
is a family of stable n-pointed curves of genus zero, which we denote by G. Notice that

degd, = degd,, degy; =degyr.
Let p,,...,py be the singular points of the fibers of f”. Near p;,, X’ is of the form
xy = t*, where ¢ is a local parameter on 7. Moreover p; dissects the fiber on which it lies

in two components, one of which is vi-pointed and the other (n — v;)-pointed, where
v; < n/2. We shall need the following result.

4 N
Lemma (4.2). degyp,=— Y (C/-CG) =) uvj(n—v).
i=1 =1
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For a proof we refer to [4], Lemma (4.8). Since v; = 2 for every j, and degd, = Zuj,
the lemma says in particular that degy, = 4degd,, and hence also that

(4.3) 12degip — degdp + degy, = 3deg o, .

We now contract components of the fibers of /' : X' — T until we get a family h: Y > T
which, together with the images of C;, C;, and Cj, is a family of stable 3-pointed curves of
genus 0, and hence a product family. For each i, we let D; be the image of C/ in Y. Since Fis
assumed not to be isotrivial, at least one among the D, with i > 3, say D,, is not a constant
section of A, that is, comes from a non-constant map from 7 to P'. As this map factors
through S, its degree is at least equal to m(S). This means that the intersection multi-
plicity of D, and D, is at least equal to m(S) for i =1, 2,3, and, as a consequence, that

degdp = 3m(S).

Taking into account (4.3), this proves (2.2) in the case under consideration. The proof of
Theorem (2.2), and hence of the projectivity of ]Vlg is now complete.

sn?
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