On the Locus of Curves with Automorphisms (*).

MAURIZI0O CORNALBA (**)

Sunto. — 8¢ descrivono le componenti del luogo delle curve con automorfismi non banali all’in-
terno dello spazio dei moduli delle curve algebriche di genere maggiore o uguale a tre. St de-
serivono poi le componenti del luogo singolare dello spazio dei moduli delle curve di genere
mmaggiore o uguale a due.

We shall describe the components of the locus of curves with non-trivial auto-
morphisms in M,, the moduli space of smooth genus g curves over the complex
numbers; we shall denote this locus by 8,. As a byproduct, we shall obtain a
description of the components of the singular locus of M,. We thank Dan Madden
for drawing our attention to this entertaining little problem.

We begin by discussing cyclic coverings of prime order p. Let X be a smooth
curve, and D = > a,q; an effective divisor on X. Suppose that a,< p for every i
and that p divides Y a;,. Then there is a line bundle L on X such that

Lr = O(D) .

If D = 0 we also want L to be non-trivial; thus we have to exclude the case when X
is rational. Let I" be the inverse image of the section 1 of O(D) under the p-th power
map I — L7, C the normalization of I, and f: ¢ — X the natural projection. Then ¢
is a connected p-fold cyeclic covering of X, branched at the ¢,. The covering trans-
formations of O over X correspond te multiplication by p-th roots of unity in L.
We shall write C(p, X, D, L) to denote ¢ when we will want to keep track of the
way O was constructed.

Pick a primitive p-th root of unity { and let y be the corresponding element of
Aut (C/X). Denote by @, the inverse image of ¢, in €. If we view the sections of
L-1 as functions on L and hence on C, such a function ¢ obeys the transformation
rule

(*) Entrata in Redazione il 13 novembre 1986.
(**) Durante questa ricerca ’autore ha wusufruito di un finanziamento del Ministero della
Pubblica Istruzione.
Indirizzo dell’A.: Dipartimento di Matematica, Universita di Pavia, Strada Nuova 65,
27100 Pavia,
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Conversely, any function satisfying this rule extends, by linearity, to a section of
L1, To see this it suffices to check that the section so obtained, a priori only mero-
morphic, is regular near each ¢,. Let w and ¢ be a coordinate on X centered at g,
and a fiber coordinate on L, respectively. The equation of I' near @, is

12 ==
and the normalization map from ¢ to ' is
t=2"; w=2¢,
where 2 is a coordinate centered at ¢,. Then

Hy(P)) = Ct(P),
hence

2(p(P)) = L"2(P),
where b, is the inverse of a; modulo p. Writing

pla) = Z ;&

i=20

we find that «; must be zero except when 45, is congruent to 1 modulo p, i.e., except
when j is congruent to a, modulo p. Thus ¢ equals ¢ times a holomorphic function
of w. In eonclusion, we have shown that, if we decompose f+(O,) according to the
various irreducible representations of Z/(p), i.e., if we write

f*(oc) = @ f*(OO)E ’
£
where £ runs through the p-th roots of unity and a section of f,(O)° obeys the rule

ply(P)) = &p(P) ,

then L= f,(0,)%.

Any p-sheeted cyelic covering of X can be obtained by the construetion we have
outlined. To see this, let y: B — X be such a covering, and ¢ a generator of the
group of its covering transformations. Set L= y,(Oz)°. Let gy, ..., ¢, be the
branch points of v and @, ..., ¢, their inverse images in . Choose local coordinates
#; centered at the @, in such a way that 22 is a local coordinate at g,. Write

2(0(P)) = {"z:(P) ,
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and let @, be the inverse of b, modulo p. It follows from the same calculations that
we used to identify f.(O.)f that L»= O(D), where

D:Zaqu.

Then F is isomorphic to C(p, X, D, L). The map j from E to L inducing this iso-
morphism is given by the following prescription. Let {, > be the duality pairing

between L and v,(9z)". Then

GP), o = @(P) .

LeMMA 1. - Let D = Y a;q; D'= 3 a; q; be effective divisors and L, L' line bundles
on X such that L*= O(D), L'v= O(D'). Then there is an isomorphism of coverings
of X

a: O(p, X, D, L) — Clp, X, D', L)

if and only if there is an integer b, 1<b << p, such that
i) ba;=a, (mod p), i+=1,..,n,
i) DPee L' 3 eiqs), where ba, = @+ eip .
Proor. ~ Set ¢ = C(p, X, D, L), O'= O(p, X, D', L), and let f: O - X, f: O'> X

be the projections. We know that L = f,(0.)%, L' = f;((‘)cy)c, with respect to gen-
erators y, 9’ of Aut (C/X) and Aut (C'/X). Suppose o exists; write

Thus

L' = f4(00) .
Clearly L~* is a subsheaf of f(90)¥ and agrees with it away from gy, ..., ¢,. Thus
f4(00)" = Lu(4)

where A is supported at > ¢;. Let z,w be local coordinates on U, X such that w
is centered at ¢; and w = z*. Let ¢t be a fiber coordinate on L. As we have already
observed, we can choose ¢ in such a way that ¢ = 2*. The funection 2% is a local
generator for L=, so

U = s

is a local generator for L. On the other hand, 2 is clearly a local generator for
1(96)¥, therefore

A= ¥eq,
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and, as a consequence,
L= L= 2 et)
Taking p-th powers, we find that

!
ba,= a; - ¢;p .

This proves the « only if » part of the lemma. To prove the converse, simply observe
that the b-th power morphism from L to L'( Y ¢,q;) induces an isomorphism be-
tween C and €. q.e.d.

ReEMARK 1. — Let O,= CO(p, X, D,, L;), 0<t<1, be a family of branched p-fold
coverings of X, where D, = a,q,(t) + @205+ ... - @,¢, and ¢({) moves in a closed
loop. Let & be the homology class of the loop. Then L, equals L,X® M, where M
is the p-torsion point in the Jacobian of X corresponding to &/p.

Now we can address our original problem of describing the components of the
locus of curves with non-trivial automorphisms in M,. Of course, this is a problem
only if g>3.

Let then € be a smooth curve of genus ¢g>3 with non-trivial automorphisms.
Obviously € has an automorphism v of prime order p and hence is a p-fold covering
of X = O/{y>. Thus the locus 8§, of curves with automorphisms is just the locus
of curves which are p-fold eyelic eoverings, for some prime p. If ¢'>0 is an integer,
p is a prime, and a,, ..., ¢, are integers between 1 and p — 1, we let

S(p, g'; ayy .y @)

be the locus of curves which are p-fold coverings of a smooth eurve X of genus g’
of the form C(p, X, 3 a,q;, L) for some choice of the ¢, and of L. We also allow n
to be zero, meaning that we consider unbranched coverings. By the Riemann-
Hurwitz formula, S(p,¢'; ,, ..., ¢,) is a subvariety of M, if

29— 2 =p(2¢—2)+np—1).

An easy parameter count shows that, when ¢>2, 8(p,g'; a1, ..., a,) always has
dimension 3¢’'— 3 -+ #. Lemma 1 implies that

S0, g5 Wy ooy @) = S(p, g'5 Cry ooy @)

if there are an integer b and a permutation j such that ar;m is congruent to ba,
modulo p for every 4. In particular we can always take a; to be equal to one. It
follows from Remark 1 and the irreducibility of M, that 8(p,g'; @, ..., a,) I8 irve-
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dueible if » > 0. If n = 0, the same conclusion follows from the fact that the moduli
space paramefrizing couples

(genus g' curve X, p-torsion point in the Jacobian of X)
is irredueible [2]. Thus
8,=U {80, 95 ty .. @a): 20— 2 = p(29'— 2) +- n(p — 1)},

and the problem of finding the components of §, is simply the problem of determin-
ing all the inelusions among the S(p,g¢’; @, ..., 4,)’s. The following observation
will be useful on several occasions.

REMARK 2. — Let € be a smooth connected curve and let § be a point of . If K
is a finite subgroup of the isotropy group of ¢ in the automorphism group of O,
then K is abelian. In fact, in a suitable local coordinate centered at C, the action
of K is linear; in other words, K acts by multiplication by roots of unity in a neigh-
bourhood of ¢. The conelusion follows by analytic continuation.

We begin our analysis of the inclusions among the S(p, ¢'; a4, ..., @,) by studying
S(p, 0; @, a5, a;), where

l=a<a,<a,<p; Z“z’:p~

Notice that this locus consists of a single point, corresponding to a curve ¢ = ((p,
Py, ¥ a;q;, O(1)). We let g be the genus of €, and y a generator of Aut (C/P?).
The Riemann-Hurwitz formula yields ¢ = (p — 1)/2. In particular p>3. In the
sequel, if D is a curve and A a subset of D, we shall denote by Aut (D, 4) the group
of those automorphisms ¢ of D such that ¢(4) = A. If y is a point :of D, we shall
write Aut (D, y) instead of Aut (D, {y}).

LEMMA 2. — If g2, then Aut (C) = Aut (C/PY) = Z/(p) unless there is an auto-
morphism © of C that covers an automorphism o of P'. This happens only in the fol-
lowing cases:

i) a; =1 (or a,=a,); 0 has order two, leaves g, (resp. ) fixed, and inter-
chomges g, with g, (resp. ¢, with g5).

i) a, is a non-trivial cubic root of 1 modulo p; o has order three and permates
1y G2y Gs cyclically.

It is always possible to choose T fo have the same order as o.

Let y be the point of C thai lies above ¢,: Then, for any g>1, Aut(C,y) =
= Aut (C/P?) unless we are in case i) and a,—= a,. If this is the case, then Aut (C, y)
s cyclic of order 2p and generated by Ty.
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Proor. — We set

G = Aut (C); P = Aut (0/PY).

Suppose G == P. To prove the first statement in the lemma we must show that P
is strietly contained in its normalizer. This iy clear if P is strictly contained in the
p-Sylow subgroup of G, sinee this group has non-trivial cenfer. It remains to
examine the case when the order of G equals pk, with % prime to p. Suppose P
equals its normalizer; it follows, in particular, that & is congruent to 1 modulo p.
Since P iy abelian, a theorem of Burnside {Theorem 2.10 in chapter 5 of [4]) shows
that G has a normal subgronp H such that G/H~P. Set I'= O/H, "= (|4,
and let : O — I" be the projection. Since I is covered by P?, it is a smooth rational
curve; 1" is a cyclic p-fold covering of I. Let 4 be the generator of Aut ([7[")
corresponding to y.. The fixed points of y map fo fixed points of §. If these are
distinet, the Riemann-Hurwitz formula shows that the genus of 7" is not less than g,
a contradiction since I" is a quotient of ¢. Suppose then that two or all three of
the fixed points of y map to the same point ¢ of I'. If () did contain fower than &
points, all of its points, in particular at least one of the fixed points of y, would be
fixed points for some non-trivial element of H. However, in view of Remark 2, this
would contradiet our assumption that P coincides with its normalizer. Since the %
points of z—(x) are partitioned into orbits of P, we find that % is congruent to 2 or 3
modulo p. This is impossible, sinee % is congruent to 1 module p and p>5. This
proves the first part of the lemma.

Now let 7 be an element of the normalizer of P, not belonging to P; it induces
an automorphism ¢ of P! which permutes ¢,, ¢, ;. Thus the order of ¢ is 2 or 3,
hence prime to p, and we may arrange things so that ¢ has the same order as o.
Suppose ¢ has order 2; thus it interchanges two of the ¢’s (¢, and ¢, say) and fixes
the other. In this case, Lemma 1 says that there must be an integer b such that

;=b, 1=ba,, a=ba, (mod p).

The only possibility is that b = a,=1. If ¢ has order 3, it permutes the ¢.’s cy-
glically, sending ¢, to ¢, (say) and hence ¢, to ¢;. Thus, by Lemma 1,

ag=a;, l=asa; (mod p).

In particular, a, is a cubic root of 1 modulo p; it is non-trivial since otherwise we
would have p = 3. Conversely, if a5=1, 4,21 (mod p), then ¢}- a,-1 = 0 (mod p),
hence a; = a; (mod p).

It remains to prove the last statement of the lemma. Suppose there is an ele-
ment ¢ of Aut (C,y) not belonging to P. By Remark 2, & centralizes P, hence
descends to an automorphism o of P* that fixes ¢, and interchanges ¢, and ¢,. It
follows that we are in case i), a,= a;, and ¢ is congruent to r modulo P. g.c.d.
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The description of the inclusions between the S(p, g’; a4, ..., a,) is contained in
the following result.

THEOREM 1. — Let X be a general curve of genus g'y 1, ..., ¢ general points of X,
@y y .oy Gy t0degers such that

L=, <@<...<t, < P,

2a;=0 (mod p),

and lot L be & non-trivial p-th root of O a;q;). Set O = C(p, X, > a;q;, L), and
suppose that C has genus g>2. Then Aunt (0) = Aut (C/X) = Z/(p), ewcept when
there is an automorphism © of O that covers an automorphism ¢ of X. This happens
only in the following cases:

i) g'=0,n=3,a,=1 (or a,==ay); o has order two, leaves q, (resp. ¢,) fixved,
and interchanges q, with ¢, (resp. q. with ¢,).

ii) ¢'= 0, n = 3, a, is o non-trivial cubic root of 1 modulo p; o has order three
and permutes ¢y, ¢o, ¢ cyclically.

i) ¢=0,n=4,a,=1, a¢;=a,= p—1; 0 acts on {¢:, ¢z, ¢s, 9s} s the product
of two disjoint transpositions.

iv) ¢/ =1,n = 2; o is multiplication by — 1 with respect to a suitable group
law on X and interchanges q, and q,.

v) g'=2,n = 0; o is the hyperelliptic involution.

We can always choose T to have the same order as o. Cases i), ii), iii), iv), v) are
mutuolly exclusive.

The proof is based on the following auxiliary result.

LeMMA 3. — Aut (C/X) is @ normal subgroup of Aut (C), ewcept possibly in case
¢g=0,n=3,0r g'=1,n=2.

We ghall first show how to deduce Theorem 1 from Lemma 3, and then prove
the lemma. The case when g'= 0, n = 3 is covered by Lemma 2. We next show
that the exceptional cases iii), iv), and v) do indeed occur. In case iii) we can nor-
malize things so that {g:, ¢, ¢, ¢} = {0, 1, oo, [}, where { is a complex number
different from 0 and 1. We let ¢ be the linear fractional transformation

a(z) = [z

It follows from Lemma 1 that ¢ lifts to an automorphism of C.
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To see that case iv) does oeeur, choose a group law on X such that ¢, and ¢, add
to zero, and let o be multiplication by — 1. Since a,= p—1, L has degree 1,
hence is of the form O(g), for some point ¢ of X. An easy application of Lemma 1
says that, in order for ¢ to be liftable to an automorphism v of U, ¢ must satisfy the
relation

O(a(g)) = O((p—1)g— (P — 2)gs) .

Since ¢ -+ o(q) is linearly equivalent to ¢, + ¢,, this is a formal consequence of the
fact that O(pg) is isomorphic to O(¢ + (p —1)¢s).

To see that case v) does occur, in view of Lemma 1 it suffices to show that there
exists a non-trivial line bundle L on X suech that L is trivial, and such that, if ¢
is the hyperelliptic involution of X, ¢*(L) is a power of L. Since the Jacobian of X
consists entirely of anti-invariants under the action of ¢, any non-zero p-torsion
point in it will do.

Our next task is to show that the automorphism group of C is different from
Z/(p) only in cases i) through v). The case ¢'= 0, n == 3 has already been dealt
with, while the case ¢’ = 1, n = 2 presents no problems; we therefore exclude them
from our considerations. Suppose Aut (C/X) is different from Aut (C), let v be an
element of Aut (C) not belonging to Aut (C/X), and ¢ the automorphism of X it
induces. By the generality of X and of the ¢,, the existence of ¢ excludes the cases
when ¢'>3,¢'=0and >4, ¢'>2 and »n> 0, or g¢=1 and »n > 2. The cases when
g'=10and » =2, or ¢=1 and n = 0 are excluded by the requirement that ¢>2.
There remain two cases:

a) g'= 0, n == 4;

b) ¢'=2,n=4.

Case b) corresponds fio case v) of the theorem. By the generality of the ¢,'s, in
case @) o must act on {g;, ¢z, ¢s, ¢u} a8 the product of two disjoint transpositions.
Suppose, for example, that it interchanges ¢, and ¢,. Then % is congruent to 1
modulo p, so it equals 1 or p— 1. Sinee the a,’s are non-decreasing and add to a
multiple of p, and ¢ interchanges ¢, and ¢,, the only possibility is that a,=1 and
a,= a,= p— 1. The other cages are similar.

It is clear that we can always choose = to have the same order as o, except pos-
sibly when the order of o equals p. This never happens in ecases i), ii), iii) since g>2.
Suppose then that we are in case iv) or v), and that p = 2. In both cases o fixes
at least one point @ that is not a branch point of f: ¢ — X. Let ¢, and @, be the
points of € lying over @, and denote by y the non-trivial covering transformation
of € over X. Since 72 covers the identity of X, it must be either the identity or y.
The latter case cannot oceur; in fact v either fixes or interchanges @, and ¢,, so 72
fixes @, and @,, while p interchanges them. This coneludes the proof of the theorem,
if we assume Lemma 3.
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ProoF oF LoMma 3. — We first deal with the case g’= 0. The proof is by induc-
tion on » and relies on a degeneration argument. Assume that n>4. Set
N \

- 3 n—1
€= 0(10’ P, E b7y, O(]}} ;o Oo= 0(2’9 P, z Sy L) »

=1 : =1

where the s; are general points of Pl b, ==¢, =1, and L?= O ¥ ¢;5,). Let R, §
be the points of €, and O, that lie above r, and s,. Let D be the stable curve ob-
tained from the union of €, and €, by identifying K with 8. The curve D is an ad-
missible covering of the union E of two copies of P! with 7, on the first copy identified
with s, on the second (cf. [1] or [3] for a discussion of admissible coverings(*)). Let
o: D — FE Dbe the natural projection. The group Aut (D/F) is equal to Aut (C,/P!) x
x Aut (C,/PY). Let G be the group of automorphisms of D sending 0, to itself (and
hence C, to itself). Clearly

G = Aut (0, B) x Aut (T, §).

The first factor is described by Lemma 2. Moreover, ¢ equals Aut (D) unless » = 4
and {by, by} = {0z, ¢;}, in which case G has index 2 in Aut (D).
Consider a family of admissible coverings, i.e. a commutative diagram

5=

) P
\ /
VAN

T

such that, for any 1€ T, &|,-,: 97Ht) —n7Y(¢) is an admissible covering. Set

ft = 5!3—1(1) ’ Dt == ’l(}’—l(t) 9 Et == 77~1<t) .

It is possible to construct o family of admissible coverings as above in such a way
that 7' is smooth, connected and one-dimensional, there is a distinguished point
0 € T such that

(&o: Dy— H) = («: D —~ B),

and, for =0, D, is a p-sheeted cyclic covering of F,= P! Moreover we can
arrange things so that, near the singular points of D and E, the surfaces D and &
are of the form

Yy =13 wv=1v,

{(Y) The admissible coverings of [3] have sinple ramification, while ours have total rami-
fication everywhere. The two notions agree for the degree two coverings considered in [1].
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regpectively, where ¢ is a local coordinate on 7T centered at 0, and £ is given by
w=a"; o=y,

We let §: § - T be the group scheme over T’ of fiberwise automorphisms of D — 7.
The morphism f is proper. Possibly after a base change, if ¢ is a general point of 7,
for any point A of Aut (D,) there is a section y of § passing through ». We get a
homomorphism

Aut (D) — Aut (D)

by sending & to x(0). We claim that this is injective. In fact, suppose that y(0) = 1.
We can view y as an automorphism of 9 over T restricting to the identity on D.
Since y has finite order, if w and z are suitable coordinates at a smooth point of D,
then D = {w = 0} and y sends (z, w) to ({z, w), where ( is a root of unity. Thus x
can preserve the fibers of § only if { =1, ie., if y is the identity everywhere.
Notice that this argument does not depend on the particular nature of D — 7', but
only on the fact that we are dealing with a family of stable curves.

Suppose n = 4. 1t follows from the preeeding congiderations that Aut (D,) is
abelian for general i, unless {b,, by} = {c,, ¢;}. In the latter case, let « be an isomor-
phism of C, onto €, carrying , to s;, and let v = («, «~) be the corresponding order
two element of Aut (D). The group Aut (D) is the semidirect product of the abelian
normal subgroup & with the order two subgroup generated by v. Recall that D, &, &
are locally of the form

oYy =1; =14 U=, v=4y",
respectively. Then, if { is a non-trivial p-th root of unity,

(@, y) — (e, (1Y)

extends to an automorphism of D over & that restricts to a non-trivial element y
of Aut (D,/E,) for any t. It is clear that vy7—'= y~%. Thus 7 normalizes Aut (D,/H,)
for any ts= 0. This shows that Aut (D,E,) is normal in Aut (D,) for any ¢, and
concludes the proof of the lemma in case ¢'= 0, n = 4. In fact, we can set ¢ = D,
for general ¢; thus € belongs to

S(p, 05 byy by, p— €2y P — €3)

and it is immediate to check that all possible S(p, 0; a4, ..., ¢,) can be gotten by
varying the b0’s and the ¢'s. Notice also that the analysis of case iii) in the proof of
Theorem 1 shows that, whenever @ is a point of C lying over one of the ¢,’s, Aut (C, Q)
is abelian.
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Now let »n be strictly larger than 4, and assume the lemma proved for coverings
of P! branched at n — 1 points. The proof of the induction step is similar to the
proof of the case n = 4, but simpler. In fact Aut (C) is a subgroup of

Aut (D) = Aut (0}, B) xAut (0, 8)

and we may assume, induetively, that Aut (C,, §) is abelian, so Aut (C) is abelian,
too.

The same degeneration argument used for ¢'= 0, namely «attaching tails belong-
ing to S(p, 0; 1, b,, b;) », proves the lemma for ¢'=1.

We now prove the lemma for an unramified p-fold covering of a genus 2 curve.
This is done by degeneration to =: D — E, where %, D, and E are as follows. Choose
two general elliptic curves F, and F, and points e, By, ¢,& H,: Let m;: D, — K,
and n,: D, — H, be two unramified p-sheefed cyclic coverings. Pick points d,e
€ mil(e;), do€ 75 (6,) and generators vy, v, of Aut (D,/B,) and Aut (D,/E;). Then
let E be the union of B, and H, with ¢, and ¢, identified, and let D be the union of
D, and D, with y%(d,) identified to y3{d,) for every n. Let = be the unique map that

restricts to sz, on each D,. Then Aut (D) is a subgroup of
Aut (Dy, 77%(e,)) x Aut (D,, 75 (es))

On the other hand Aut (D,, n7%(e,)) is the dihedral group generated by the multiplica-
tion by — 1 with respect to the origin d,, which we denote by J,, and by y,. Thus
Aut (D) is the dihedral group of order 2p generated by (d;, d;) and (4, y,), unless
p = 2, in which cage it is the abelian group of order 8 generated by (4,, 1), (1, &),
and (y,7,). In any case Aut (D/E) is normal in Aut (D).

We next prove the lemma for a p-fold covering of a genus 2 curve branched at
two points. This is done by degenerating to an admissible eovering n: I) — F which
we shall now deseribe. Let mz,: D, — F, be an unramified cyelic p-fold covering of a
general genus 2 curve. Let D,, E, be two copies of P and let m,: D, — H, be the
p-th power morphism. Fix a general point ¢ on E,, a point d in n7"(e), a generator y
for Aut (D,/E;), and a primitive p-th root of unity {. Let E be the union of I,
and FE, with ¢ E, identified to 1 E,. Let D be the union of D, and D, with
yMd) € D, identified to {7e D, for every n. Let & be the unique map that restricts
to 7; on each D,. Suppose first that p>3, so that D is stable. Then Aut(D,,
{1,¢,...,0771}) is the dihedral group of order 2p generated by multiplication by ¢
and by the inversion # — z~1. On the ofther hand, by the generality of ¢ and by the
lemma applied to =,: D, — E,, Aut (D,, n;*(e)) equals Aut (D,/E,). Thus Aut (D)
is isomorphic to Aut (D,, {1,¢,...,{"1}) and Aut (D/E) is normal in it. This takes
care of the case p>3. If p = 2, then D is no more stable. To be able to apply our
degeneration argument we must blow down D,. Thus we have to examine Aut (D'),
where D’ is obtained from D, by identifying the two points of n'(¢). By the gen-
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erality of e, Aut (D'} equals Z/(2). This concludes the proof of the lemma in the
cage at hand. Notice moreover that in the proof of Theorem 1 it was shown that
the lemma implies that the automorphism group of & general cyelic p-sheeted cover-
ing of a genus two curve branched at two points is Z/(p).

‘We may now conclude the proof of Lemma 3 by yet another degeneration ar-
gument. This time we shall use induction on g’ and keep the number of branch
points fixed. The induction starts with the cases ¢'=1,n>3 and ¢'=2,n =0 or
# == 2. Notice that in all these cases, exeept when ¢ = 2, n = 0, the full auto-
morphism group is Z/(p). When g'= 2, » = 0, Aut {0/X) has index two in Aut (0),
the quotient being generated by the hyperelliptic involution of X. Fix a eyelic
p-sheeted covering n,: D, — E, branched at n general points, where E; is a general
curve of genus ¢ >1 (¢’ >2 if n<?2). Let B, be a general elliptic curve. Choosge a
point e, on K, and a general point ¢, on IJ;. We let D be the union of D, and of p
copies of E,, attached by e, to the p points of n7'(e,). Obviously, D is an admissible
covering of the union of E, and E, with ¢, and e, identified, which we denote by #.
Clearly Aut (D) is the semidirect produet of Aut (Dy, n7%(e)) == Z/(p) and Aut (B,
6,)?, the first group acting on the second one by permuting the factors. The
infinitesimal first order deformations of D are in one-to-ome correspondence with
the elements of Ext' (25, 0,). This group, in turn, fits into an exaet sequence

0 — H'(JCom (25, 95)) — Ext' (2}, 0,) — H(&xt' (2}, 9,)) -0,

where the sheaf 6xt' (£}, Op) consists of p copies of € concentrated at the singular
points of D. The vector space H*{¥Kom (L2}, 0p)) classifies the infinitesimal locally trivial
deformations of D. The automorphisms of D aet on Ext! (2%, O,): an automor-
phism # extends along a first order deformation » if and only if » is y-invariant. In
particular, in order to survive smoothing of the singular peints of D, n must act
trivially on 8xt' (22}, 9,). Now Aut (#,, ¢,) is the group of order 2 generated by
multiplication by — 1 with respect to the origin e,. Denote by 6y, 6, ..., , the
generators of the p copies of Aut (&, e,) in Aut (D), and by @,,@.,...,Q, the
corresponding singular points of D. The automorphism §, acts as multiplication
by — 1 on the stalk of &xt' (2}, O,) at @,, hence does not survive smoothing of the
singular points of D. Thus, if D, -+ H, iz a one-parameter family of cyclic p-sheeted
coverings such that (Dy— H,) = {D — ¥} and D,, I, are smooth for ¢ 0, then,
for general ¢, Aut (D,/H,) = Z/(p). This completes the proof of the induction step
from cyclic p-sheeted coverings of genus g’ eurves to cyclic p-sheeted coverings of
genus ¢’ -+ 1 curves. q.e.d.

COROLLARY 1. — If g3, the components of 8, are the subvarieties 8(p, ¢'; a1y ..., @)
with 1 = a,<...<a,< p such that

29— 2 =p2¢'— 2) +nlp—1),
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with the cwclusion of those satisfying one of the following conditions:

i) ¢=0,n=3,a,=1 (or (ay==t).

ii) ¢'=0,n =23, a, is a non-trivial cubic root of 1 modulo p.
i) g'=0,n=4,6,=1,a,=a,=p— 1.

iv) g'=1,n=2,

v) g'=2,n=0

If 8(p, g5 @y .eey o) and 8(p, g'; av, ..., a,) do not satisfy i), ii), iii), iv), or v), and
. . . f .

are equal, then there are an integer b and ¢ permutation j such that a,, is congruent

to ba, modulo p for every 1.

ProOF. — The only point that requires some explanation concerns the exclusion
of the components of type v) in genus 3. In fact, if f: ¢ — X is an unramified cover-
ing, X has genus 2, and O has genus 3, the Riemann-Hurwitz formula yields p = 2.
So, if 7 is an order two automorphism of C covering the hyperelliptic involution of X,
it might a priori be possible that the quotient of ¢ by = has genus 2, i.e. that 7 has
no fixed points. This, however, is not the case. Let y be the generator of Aut (0/X).
The fixed points of 7, if any, come in pairs of points lying above the Weierstrass
points of X. Moreover, if @ is a2 Weierstrass point of X and ¢, @, are the points
of ¢ above it, either v fixes ¢, and @, and yv interchanges them, or viceversa. Thus,
if  has » fixed points, y7 has 12 — » fixed points. The Riemann-Hurwitz formula
implies that an order 2 automorphism of € can only have 0, 4, or 8 fixed points.
Thus, either = has four fixed points and y7 has eight, or viceversa. In particular, €
is hyperelliptic and belongs to 8(2,1;1,1,1,1). q.e.d.

COROLLARY 2. — a) The singular locus of M, equals S, if g>4.
b) The components of the singular locus of M, are:
8(3,0;1,1,1,1,2),
8(7,051,1,5),

82,1;1,1,1,1).

PRroOF. — We first reeall how the singularities of M, arise. We assume that ¢>3
throughout. Let @ be & point of M,, corresponding to a curve C. Let

f: C-B

be the universal deformation of ; thus there is a distinguished point b e B such
that 74b) = (. The action of Auvt (C) on C extends to an equivariant action of
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Aut (0) on C and B, and the quotient B/Aut (C) is isomorphic to a neighbourhood
of @ in M,. Moreover, the action of Aut (C) on the tangent space to B at b is
faithful. The covering B — B/Aut (C) is unramified off the locus of curves with
pon-trivial automorphisms, so the singular locus of M, is contained in §,. By the
purity of the branch loeus theorem, any component of S, of codimension two or
more consists entirely of singular points. If ¢>4, we know from Corollary 1 that
every component of S, has codimension at least two: this proves a). Now suppose
that ¢ = 3. The only divisor component of 8, is the hyperelliptic locus. Therefore a
non-hyperelliptic eurve corresponds to a singular point of M; if and only if it has
pon-trivial automorphisms. Suppose instead that ¢ is hyperelliptic, and let 7 be
the hyperelliptic involution. The gquotient of B by the action of the normal sub-
group of Aut (C) generated by 7 is a smooth manifold B’, and B is a two-gsheeted
covering of B’ ramified along the locus of hyperelliptic curves. The moduli space M,
is, locally, the quotient of B’ by the action of Aut (C)/<{7). Using again the purity
of the branch locus theorem, we conelude that the singular points of M, lying on
the hyperelliptic locus correspond to the hyperelliptic curves with extra auto-
morphisms.

The varieties S(p, ¢'; a4, ..., a,) contained in M; are the hyperelliptic locus and

8(3,051,1,1,1,2),
8(7,051,1,5),
8(7,0;1,2,4),
82,15;1,1,1,1),
83,151, 2),
8(2, 2) .

We know from Theorem 1 that §(3,0;1,1,1,1, 2) and 8(2,1;1, 1,1, 1) are contained
in no other component of §,: In the proof of Corollary 1 we have seen that

8(2,2)c8(2,1;1,1,1,1).
We now show that

8(3,1;1,2)c 8(2,1;1,1,1,1) .

Let C be a three-sheeted eyclic covering of the elliptic curve X, branched at two
points ¢, and g,. Denote by » a generator of Aut (C/X) and by 7 an order two
automorphism of C covering an automorphism ¢ of X. Let @ be a fixed point of ¢
and @, @., ¢, the points of ¢ above it. If y commutes with 7, then 7 fixes §,, €, @s,
otherwise 7 fixes one among them and interchanges the other two. Since ¢ has four
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fixed points, the first alternative would imply that 7 has twelve fixed points, which
would contradict the Riemann-Hurwitz formula. Henee 7 has four fixed points,
which proves our assertion. A similar argument shows that

8(7,051,2,4)c 8(3,1;1,2).

The unique point of §(7,0;1,1,5) is the double covering of P! branched at 0
and at the seventh roots of unity. Its only automorphism of order two is the hyper-
elliptic involution. Hence 8(7,0;1, 1, 5) is contained in the hyperelliptic locus and
in no other variety S(p,¢'; ¢, ..., a,). This finishes the proof of b) and of the
corollary. q.e.d.

Corollary 2 describes the components of the singular locus of M, when ¢>3.
When ¢ equals zero or one, M, is smooth, while it has been shown by IaUsA [4] that
the singular locus of M, is §(5,0;1,1,3); thus M, has only one singular point.

We conclude by noticing that the results proved in this paper make it possible
to algorithmically calculate the components of the singular locus of moduli space.
The results of these caleulations, for genus up to 50, are summarized in the tables
that follow the bibliography. Due to space limitations, for genus greater than 13
only the number of components for each dimension and the total number of com-
ponents are given.
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The components of the singular lovus of M,, 4<g<13, arranged by dimension
(x: n stands for @ sequence of n ’s).

Qenus 4 Qenus genus O:
gimension |1 $(5,0;1:3,2) 5(5,0,1,234) & sigiza G 150,1210)
3 $(3,0,16) $(30,4:323) 83,113 4 $(30,1522) S(3,1;1:222) Voos(20,134) S(7,0;1:223) $(70,1258)
5. $(2232) & $23) 2 35015} $(50,1334) 5(50,12224)
& S(2,1;16) T 2214} 5 80301721 S(30;14.24) $3,1;04,2) 8(3.2,1.2)
T %2010} & HZuE8) & 802312}
¢ S20,012) 2 $22;16)
10 $2,1;110)
P $(2,0,0:44)
gerus 7. genws &:
3 (51,123} ¢ $17,0,1,2,14) $170,1.3,13)
0 S(3.0,19) 51301623 M3 L16) 351323 &32:1:3) 33 3 §(50;14,24) $(50;,14,32) $(50;1:3223) ${5,0;13,43)
$(5,0;1:2,2,3,42) To3,0,16,22) HI01525) 31522 HI 212,22
9 $(2.4) e S(2412)
10 $2,314) 12 $2310)
11 $(2,2,18) 13 22,110
1 8{2,1;1:12) : 14 $i2,1;1:14)
13, §(2,0,1:18) 15 $%2,0,1:18)
genus ¢ genus 10:

0 SU190;1,2,16) $16,0,1.3,15) i 5(”,0;11.3,5) S22 8(11,0,1:236) $(11,0,1:245)
2 $(20,14.3) S(7,0,1:3,22) S(101350) $(70,1:2240) $(70,12252) $(11,0,1,235) 8(11,0;1,28,10) ${11,0,1,38,10)

$(7,0;,1:2345) 3 STGI25) S124)
4 $(51,132) $(5,1;1-2,42) $(5,1;1,2,3,4) 4 SSO16,4) S(SE1523 S150,14,23) §50,1:4,342) $(50,1:3,22,42)
8 5(3,0,1:10,2) 5(3,0,1.7.24) $(3,1,1:7,2) $(3,1;14,24) $(3,2,14,2) ${5,0,13,2 32,4}
$(33,1.0 5 $5,2;,1.4)
12. $(25) @ S30102) SITO9.23) 3(30.:6,26) S(3,1,19) $(%1;16,23)
15 5(2,4;14) o O3.2,10) $(3,2,13,23) 3315 S(34)
14 $2,318) 14: 9i25;1:2)
15 82,2112 15 8(2,410)
16 ${2,8;1:16) 16 $(23;1:10)
17 $(2,0;1:20 AT §62.2;614)
16 S(2,5;1:18)
% 5(2,0,1:22)
qenus tl: Qerua il
0 $23,0,1,220) $1230,13,190 1 S(130:1:3,000 $(130,1:229) S(13.0,1:23,8) (130,124 $13,0,1:256) $(13,0,1,237) ${i3,0,0,211,12)
$(23.0,1 4,18) 8{13,0;1,34,5) $(139,13,10,12) $(130;1 558,12
S 5(51;15) $(5,1,1:334) % 8(70;152) S(7,0,1:44,0) S(70:1:452) $(70,13236) $701:3245) 5(7,0,1:3325) 3{70,1:3342)
$45,1,1.222,4) #7.0,03,63) &7.01.22235) $70;0:22242) $70,122324) $(70,1:22562) $(7.0;,12,34,62)
6 §53) S(70;,1,235459)
10 S3,00:01,22) $(3,0,1.825) S S5,0,173) s(50;1:522) $(59,1:5242) $(5,0,15324) $(50;1:14223,4) $(50;,1:42,33) $(50;1:444)
$(3,1,18,22) $(3,1,i:5.25) $5,0,43,2332) $(50,1:32343) 5(50,1.2223242)
$(3,2,15,22) $(33,1:2,22) 6 ${52;1:2.3)
15 528) P 8(3,0:1:132) $(3,0,1:1024) ${30:17.27) S$(3,1,1:002) 5{3,1;1724) $(32,1:7,2) $(3,2;1:4.24) $(33,142)
6 ${2514) $(3,4;1,2)
17 8(24,18) 170 8(2,6;1:2)
18, 3(2,3:1:12) 18 S(2516)
19 $(22:110) 19 24110}
200 $42,1,1.20) 20 $42,31:14)
21 %2,0,1.24) 21 5(2,2,1:48)
22 82,0122}
23 $(2,0:1:20)
genus 13
4 S(7,1,134) Si7,1;1:22.3) $(7,0,1262) §(7,0,1256)
O 505,1;1:4.24) §(5,1,):4,32) §(51:1:3,223) $(5,0;1:343) §(5,1;1:22342)

12 813,0,115) §3,6,1:223) $(3,0,1:9,20) S(3,1;102) $(3,1,1:9,23) $(3,1;1028) Shzrw S{IZ1620) S33510) $(3351.3.23) $(3,4,1:3) $(35)
18 %27

19, Si2.0;1:4)

200 H25.18)

21 $(24:1:12)

22 523.0:18)

23 sRzram

24, 3(2,1;0.28)

75 $20,128)
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The number of components of the singular locus of M, 2<g< 350, by dimension
(w: n means «n components of dimension x ).

G fotal |

G 21 41 total 3

123350 &1 1 tolel 8

@} 42 81 71 &1 91 tedg 7

01 13 23 54 87 ¢ el Thl tolsl 15

3160 &1 10k 1 120 130 total 12

G2 35 A 101 121 131 144 150 total 16

G2 26 43 85 127 137 141 150 181 1721 totel 23

L7 32 46 571 99 140 11 160 171 181 197 total 3¢

O3 83 &1 108 153 160 171-18) 190 200 211 totat 20

LI 314 510 61 109 170 181 191 200 281 2210 2% toisl 5t

44 65 1212 181 190 2000 200 221 231 240 250 totw 20

04 ST 631 73 139 260 200 221 231 241 251 261 271 total B

G4 219 419 61 76 &1 1412 211 221 230 241 254 261 271 281 21 total 7§

116 3250 715 83 9 1516 233 241 251 261 271 281 240 301 31 total 09

62 810 S0 1602 201°251 26:1 378 284 290 30:0 310 321 330 totel 35

05 119 226 533 816 95 17:16 261 270,260 2011 300 30 321 333 34 354 totel 134

I3 814 911 103 1820 271 281 201 301 301 321 331 341 &1 361 3T total 62

05 349 74 925 105 11:1 1906 201 304 311 320 330 341 351 38 IT1 381 321 total 118

06 48 640 &1 1016 113 121 2020 30:5 31 321 X% 341 3&1 361 3T 384 301 400 451 total 116

127 §4 719 &1 10:28 1110 121 2125 324 334 341 351 350 301 380 320400 410 420 9431 tolal 124

07 &1 8% 1148 125 2220 331 341 351 361 371 381 381 401 411 421 431 i 45 el W

257 385 T75.G2 1136 1241 133 2325 350 360 370 381 301 400 41 421 437 44 45:1 46 471 total 308

33 4115 833 1225 136 141 2430 38! 370 300 301 400 411 421 431 441 457 46:1 471 481 491 tolal 227

08 520 9:14 1241 1310 143 151 2525 381 301 400 411 421 4% 441 <51 461 471 43:1 401 S0:f 511 totel 142

277 63 8164 104 1328 1410 151 2630 30} 401 411 421 431 441 451 961 471 4811 491 507 517 521 531 total n

142 24 945 THI 1351 1418 155 2730 411 4210 431 441 451 46:1 471 48] 49} S0 511 S21 SXT 540 551 totai 22t

G8 1019 121 1436 1511 163 2630 421 430 441 451 461 471 481 99:1 50:0 511 52 531 541 551 56:1 571 total 125

08 147 4204 5228 QIS4 115 1457 (525 100 171 293 441 451 46:1 471 481 1 S8 St S21 531 541 551 561 571 S84
591 total 789

528 849 1075 122 1541 1616 173 185 3042 45 481 471 481 491 504 Sk 521 531 S4:1 551 55 570 S&1 541 601 11
tolel 274

3207 63 T8 1133 1500 1028 17:40 181 3136 47 481 401 501 511 521 531 541 554 St ST 581 51 801 814 621 634
total 412

Q10 2130 €57 8:1 10204 1214 1051 1718 185 3242 481 49 501 551 521 S31 54 557 581 571 S5t 591 O 814 62 831
o4 051 totel 510

24 B 21 1104 134 1677 1730 1811 193 3348 507 511 521 531 54 S50 56 574 581 59 B4 GL1 821 031 641 051 881
871 totel 358

11 G443 1249 144 1757 1325 196 200 3442 513 521 534 544 551 58] 571 581 5¢1 604 D11 521 631 641 655 o) 474
S8 631 lotol 054 .

(11 165 5307 5400 7:104 14283 3319 15 {792 184 1210 203 21:4 3549 53) 54 S5) 56 57 S8 521 801 Hi:1 621 631
D31 651 801 671 63} B2) 701 Ti1 total 1508

420 &:30 819 12154 140 1559 1020 2010 211} 3650 541 551 S&! 571 581 501 601 &1 624 634 O4) 651 Ol 621 081 04
E 701 T2 TR lotal 460

S 1) 92 1375 152 101 1951 2008 205 3749 S50 574 581 58 800 0)) 62) 631 o4} 650 0B 071 681 091 T0L Tid
21 TR 1 WY iotel 335

G126 B 12370 1433 1977 2030 2041 223 3858 ST 584 501 600 611 621 031 641 051 081 671 b8} 053 0 Thi T2
i) THL TSRS W TR Lol 022 i

1:80 4627 7.654 &1 13204 15:44 19:118 2057 21:25 226 254 3904 5¢1 6G1 O:1 621 631 641 651 St T8 o8 831 T¢I TId
T2 T3 M T M) TR 73 78 total 2072

G143 557 5228 14104 184 2092 2141 2216 233 241 4056 001 814 02) 631 641 651 661 677 681 8%t T03 TN 728 T34 M
Tal 2l TRD 781 721800 810 tote) 037

LT 2248 C1003 949 13492 1549 71 2030 2169 2228 2310 241 41:04 621 631 041 03! 4] 67 881 %1 701 71 720
TV W TS W TR TR 79 ) BI B2) 831 lotal 2333

35 7204 108 14283 1619 18 21001 2251 23310 245 4272 631 041 051 601 671 681 6%1 T 71 T2 Bt M TS W
T W0 TR 80 811 821 83} B4 85 tolel TG0

Gl4 3598 6:28 11:1 1154 176 21150 2277 2336 24:11 253 4364 651 86 671 681 801 70 701 20 731 740 T8 M T
W TR0 B0 B):1 823 831 B4 85 8&) 871 totsl 1165

2300 4:1040 &I527 93 121 14027 1675 182 22118 2357 2425 250 26 4472 651 571 681 631 70 744 T2 T3 M TS
W TR TEL TR 800 Bicl 821 8% B4 851 860 87 881 321 totel 3878

1103 30 578 9442 15371 1733 22104 2597 2441 2510 283 271 458) 06} 093 TO1 il 72 TR 4 TmL M) 7R M8 79
GR1 QL1 821 831 B4 854 8b BZY 881 B9 9O 911 fotal 1455

05 10104 10204 18:14 23130 2400 2528 2610 271 4672 801 700 761 721 TR M TS 764 770 781 790 801 81 821 331
841 851 801 8T1 B&1I BRI QO ST 921 §31 iotal 602

IS 50625 72282 11:19 15813 17:104 194 23180 24:103 2551 2618 275 4781 714§ 28 T34 ) TS 60 T 780 78 800
B8 821 831 B4 851 861 BT BB 31 001 Gh1 920 031 041 951 totel 5529

6207 8480 122 16492 1849 20:1 24050 2577 2635 2731 283 4890 721 731 M1 TSI M4 TH) 78 ) 50 811 821 8% 84
Bl Bl 571 881 B9 i S 921 9% G4 951 061 071 lotal 1640

CH0 707 2779 17203 1919 211 24203 25118 2057 2725 280 267 4981 741 75 76 T T8 T 80 8k} 821 834 B4
§5 Bl 871 Bl 8%} 901 Ok} 924 OFI B4 9%} S5 971 08 9% lodw 3632



