GEOMETRIA 1 geometria proiettiva 19 gennaio 2016

Nel piano euclideo siano (x,y) coordinate cartesiane ortogonali monometriche, e siano $[x_1, x_2, x_3]$ le corrispondenti coordinate omogenee nel piano proiettivo reale $P_2(\mathbb{R})$ (dunque $x_3 = 0$ è l'equazione della retta impropria).

Se Γ è una conica, con la notazione " Γ_0 " si indicherà l'intersezione del supporto di Γ con il piano euclideo, cioè *l'insieme dei punti propri del supporto di* Γ .

1. Siano: S_1 la traslazione che porta l'origine nel punto di coordinate (0,2);

 S_2 la simmetria (o riflessione) rispetto alla retta di equazione y+1=0;

 S_3 la simmetria (o riflessione) rispetto alla retta di equazione x + y = 0.

Si definiscano poi: $H_1 = S_2 \circ S_1$, $H_2 = S_3 \circ S_1$, $H_3 = H_2 \circ H_2 = H_2^2$.

Si dica - giustificando la risposta - di che tipo sono le isometrie H_1 , H_2 , H_3 .

Esistono punti del piano euclideo lasciati fissi da H_2 ?

Esistono rette del piano euclideo lasciate (globalmente) fisse da H_2 ?

Si estenda H_2 a $P_2(\mathbb{R})$ e, in $P_2(\mathbb{R})$, se ne trovino i punti fissi. Quali rette di $P_2(\mathbb{R})$ sono (globalmente) fisse in H_2 ?

Tra le estensioni a $P_2(\mathbb{R})$ delle sei isometrie studiate nel presente esercizio, ce ne sono alcune che hanno gli stessi punti fissi in $P_2(\mathbb{R})$?

Tra le estensioni a $P_2(\mathbb{R})$ delle sei isometrie studiate nel presente esercizio, ce ne sono alcune che hanno la stessa restrizione alla retta impropria di $P_2(\mathbb{R})$?

2. Si considerino poi in $P_2(\mathbb{R})$ le coniche Γ_1 , Γ_2 , Γ_3 e Γ_4 di equazioni

 $\Gamma_1: \quad x_1^2 - x_2^2 = 0;$ $\Gamma_2: \quad x_1x_2 + x_1x_3 = 0;$

 $\Gamma_3: \quad x_1^2 + x_2^2 + 2x_3^2 + 4x_2x_3 = 0;$ $\Gamma_4: \quad 2x_1^2 + x_2^2 + 4x_3^2 + 4x_2x_3 = 0.$

Si classifichino Γ_1 , Γ_2 , Γ_3 e Γ_4 dai punti di vista proiettivo e affine, con eventuali precisazioni dal punto di vista euclideo.

3. Si considerino ora anche $\Gamma_{1,0}$, $\Gamma_{2,0}$, $\Gamma_{3,0}$ $\Gamma_{4,0}$ e si illustrino con un disegno la loro posizione e le loro intersezioni.

Di ciascuno dei supporti di Γ_1 , Γ_2 , Γ_3 e Γ_4 (sottoinsiemi di $P_2(IR)$, dotato della topologia usuale) si dica se è connesso e se è compatto. Di ciascuno degli insiemi $\Gamma_{1,0}$, $\Gamma_{2,0}$, $\Gamma_{3,0}$ e $\Gamma_{4,0}$ (sottoinsiemi del piano euclideo), si dica se è connesso, se è compatto, se è completo..

Si dica quali isometrie (del piano euclideo) lasciano (globalmente) fisso l'insieme $\Gamma_{3,0} \cup \Gamma_{4,0}$.

Si dica quali isometrie lasciano (globalmente) fisso l'insieme $\Gamma_{1,0} \cup \Gamma_{3,0}$.

4. Nelle righe seguenti, i simboli H_1 e H_2 indicano sia due trasformazioni del piano euclideo sia le loro estensioni a $P_2(\mathbb{R})$.

Vero o falso?

- 1. se H_1 è un'isometria, H_2 è una trasformazione affine, e le loro restrizioni alla retta impropria coincidono, allora anche H_2 è un'isometria;
- 2. se H_1 è un'isometria, H_2 è una trasformazione affine, ed esiste una retta propria sulla quale coincidono, allora H_2 è una similitudine.